WARRIP WESTERN AUSTRALIAN ROAD F

WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

> Determination of pavement distress parameters for identifying potential rehabilitation sites in MRWA's road network

AN INITIATIVE BY:

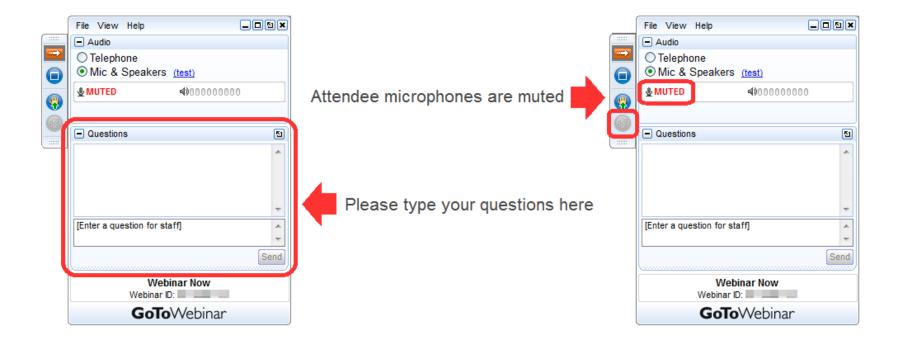
WARRIP

WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

Suzie Chan

Webinar Moderator

- Senior Professional, Outreach & Events, Communications, ARRB
- P: +61 3 9881 1590
- E: training@arrb.com.au


Housekeeping

- Webinar is 60 mins
- inc. question time of 10 mins

GoTo Webinar Functions

WARRIP

WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

Presenters

Dr. Tim Martin National Discipline Leader – Performance Modelling Road Asset Performance, ARRB

Ranita Sen Senior Technology Leader Road Asset Performance, ARRB

Qindong Li Asset Management Modelling & Analytics Manager Asset Management Main Roads WA

Webinar Outline

MRWA Maintenance challenges

- Largest geographically spread road jurisdiction in the world
 - \circ Covering 2.5 million square kilometres
 - o 19,000 km state network
 - Pavement & surfacing assets valued over \$10 billion
- Limited fund vs increased community expectation
- More government scrutiny on funding need
- An aging work force

Solution: Work Smarter with Data

Objectives

Undertake a parametric analysis to determine the predominant structural distress modes to target MRWA rehabilitation work

Scope:

- Use 800 km list of verified MRWA rehabilitation sites
- Combine condition data and variables, including defects and maintenance costs
- Separate the sites into subnetworks (regions) in addition to full network
- Determine distress modes and other independent variables that identify rehabilitation

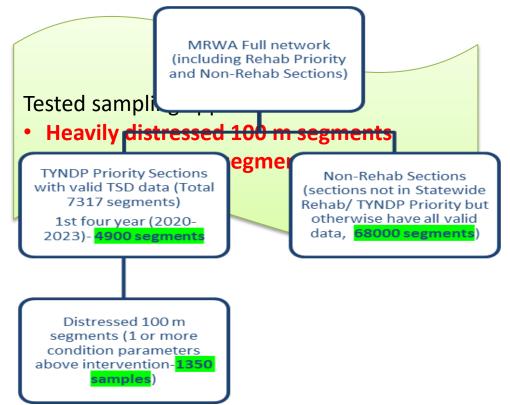
Analysis Methodology

Selection of rehabilitation samples

Selection of non-rehabilitation samples

Multivariate logistic regression analysis

Identification of significant predictors

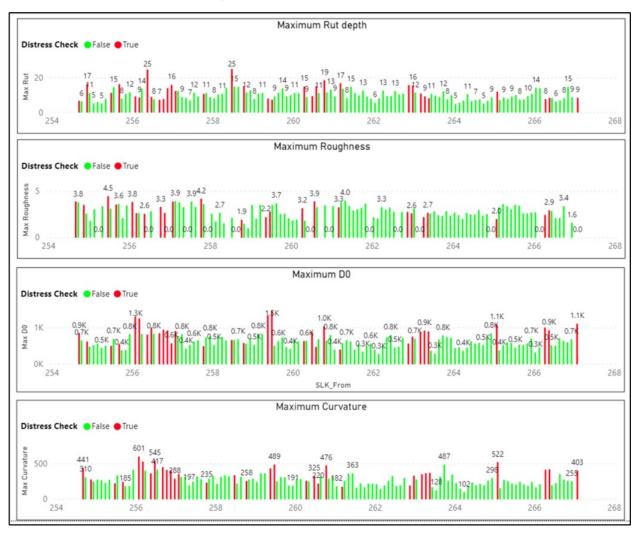


Selection of distressed segments

- Sections in the 1st four year of rehab program selected on condition
- Not all 100 m segments within a rehab section will be in bad condition
- Long rehab lengths because of
 - condition, efficiency, funding availability

Pin-pointed localised distressed 100 m sections using criteria:

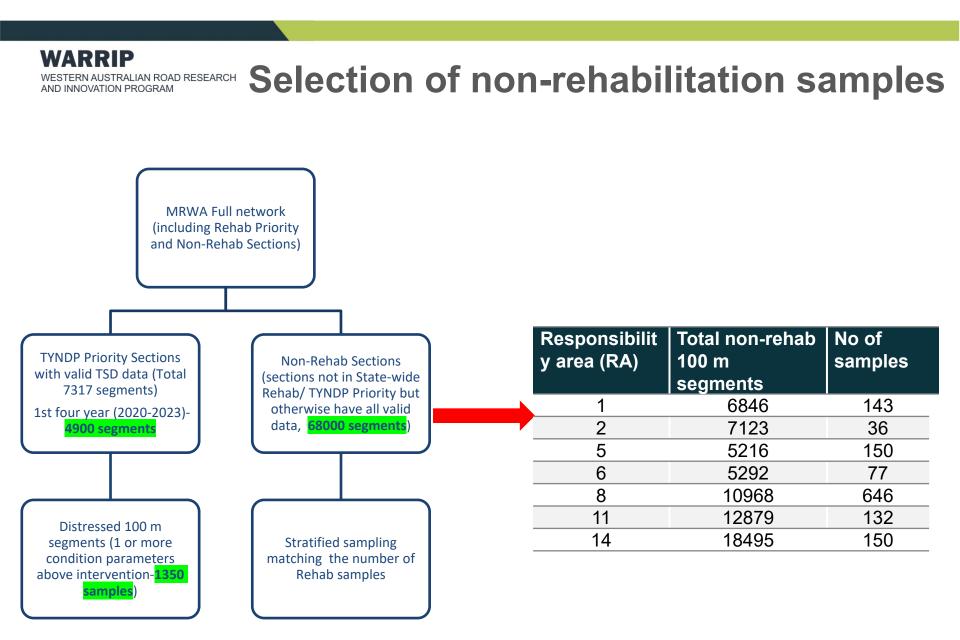
- Maximum IRI > 4.1
- Maximum rut depth >15 mm
- Maximum $D_0 > 800$
- Maximum curvature > 300



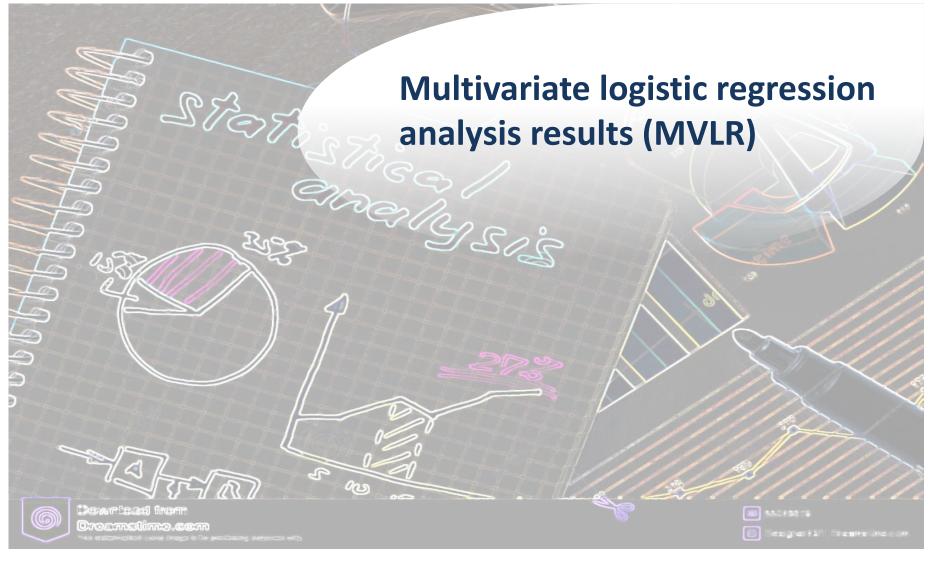
Rehabilitation sample selection: distressed 100 m segments

Distress Check ●False ● True		Responsibility Area (RA)	Region Name	No of rehabilitation sample
		1	Great Southern	144
		2	South West	36
		5	Goldfields Esperance	147
	WESTERN AUSTRALIA	6	Kimberley	77
	14 # 3 m	8	Wheatbelt	667
	ALM T	11	Pilbara	131
		14	Mid-West Gascoyne	149
b Bing	© 2020 TomTom © 2020	Total		1351
		134.920 (27% 357.6799 (73	Distr Fal Tru	

WARRIP WESTERN AUSTRALIAN ROAD RESEARCH Rehabilitation sample selection


Distressed 100 m segments within a candidate rehabilitation section

WARRIP


WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

Non-rehabilitation sample selection

WARRIP

WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

MVLR: assumptions & outputs

Statistical technique **predicted relationship between** predictors and predicted variable where the dependent variable is **binary** (e.g. rehabilitated / not rehabilitated)

Assumptions

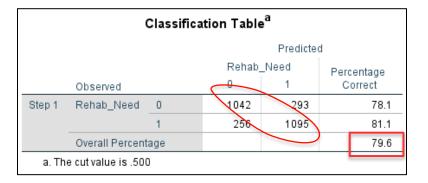
- adequate sample size
- absence of multicollinearity

Outputs

- statistical significance of the model
- percentage correct prediction by the model
- significant predictors (*p* < 0.05) of the regression coefficients for the independent variables
- R square values (e.g. Nagelkarke R square)

ARCH Analysis results: whole network

WESTERN AUSTRALIAN ROAD RESEARC AND INNOVATION PROGRAM


Combinations	Max IRI	Max Rut	Max D0	Max curvature	Avg IRI	Avg Rut	Avg D0	MMIS_Cost	AADT	Pct HV	Model pred	Nagelkerke R squa	Significant parameters
Comb 1	\checkmark										58.10%	0.05	IRI
Comb 2		\checkmark									74.90%	0.348	Rut
Comb 3			\checkmark								66.00%	0.158	Do
Comb 4	\checkmark	\checkmark									75.70%	0.37	IRI, Rut
Comb 5	\checkmark	\checkmark	\checkmark								79.60%	0.468	IRI, Rut, D0
Comb 6	\checkmark	\checkmark	\checkmark					\checkmark			80.20%		IRI, Rut, D0, MMIS_Cost
Comb 7	√	\checkmark	\checkmark	\checkmark				√			79.70%	0.493	IRI, Rut, D0, MMIS_Cost, Curvature
Comb 8					\checkmark	\checkmark	\checkmark				74.50%	0.353	IRI, Rut, D0
Comb 9					\checkmark	\checkmark	√	\checkmark			74.60%		IRI, Rut, D0, MMIS_Cost
Comb 10	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	80.10%	0.495	Rgh Rut, D0, MMIS_Cost, AADT, Pct HV
Comb 11	\checkmark	\checkmark	\checkmark							\checkmark	79.60%	0.471	Rgh Rut, D0, Pct HV

Model selection basis:

- all independent variables in the model must be statistically significant (p < 0.05) with regression coefficients of sufficient magnitude
- independent variables must not have a negative regression coefficient

Analysis results: whole network

Combination 11

Variables in the Equation							
		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	Max Roughness	.307	.050	37.101	1	.000	1.359
	Max Rut	.238	.011	480.212	1	.000	1.268
	Max D0	.003	.000	229.703	1	.000	1.003
	Perc_Heavy	.012	.004	9.090	1	.003	1.012
	Constant	-6.085	.291	437.557	1	.000	.002
a. Variable(s) entered on step 1: Max Roughness, Max Rut, Max D0, Perc_Heavy.							

Identification of rehabilitation sites = 0.307(*Max IRI)+ 0.238*(Max Rut)+ 0.003*(Max D0) + 0.012*(Pct HV)- 6.085 Threshold value= 1.481

Analysis results- region specific

Network/ region	Region Name	Equation to identify rehabilitation candidates	Threshold values for rehab. sites
RA1	Great Southern	0.342*Max IRI + 0.004*Max D0 + 0.173*Max Rut – 5.993	1.238
RA2	South West	0.356*Max Rut – 4.617	0.723
RA5	Goldfields Esperance	0.236*Max Rut – 3.334	0.206
RA6	Kimberley	0.350*Max Rut + 0.517*Pct HV ⁽³⁾ – 15.805	1.336
RA8	Wheatbelt	0.487*Max IRI + 0.002*Max D0 + 0.255*Max Rut – 6.243	1.227
RA11	Pilbara	0.008*Max D0 + 0.436*Max Rut + 0.040*Pct HV ⁽⁴⁾ – 11.670	3.694
RA14	Mid-West Gascoyne	0.010*Max D0 + 0.350*Max Rut – 10.968	2.282

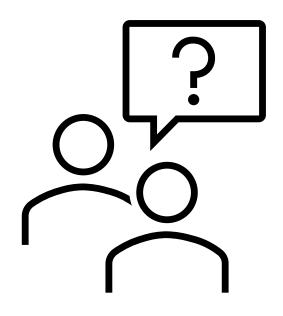
Findings from the analysis

Significant predictors of rehab selection:

- Max rut depth (100 m segment)
- Max roughness (100 m segment)
- Max deflection Do (100 m segments)
- Some regional affects (not always)
- Percent HV

Factors with no significant affect on rehab selection

- MMIS defects
- Curvature (D0-D200)
- Pavement age
- Rainfall
- Surface age


Implementation and benefits to MRWA

- Formulas validated in the field and very positive feedback was received
- Power BI App and ArcGIS online maps developed to assist regional adoption
- Used in supporting planning & delivery of rehabilitation works

Opportunities for further development

- Further refinement of equations allows differentiation between sites requiring rehab. for functional or structural reasons through extended MVLR analysis using
 - (slope velocity) & indirect outputs (D_0, D_{200}) from the TSD,
 - improved time-series MMIS data, treatment scope
 - available pavement materials and construction data
- Develop methodology classifying rutting type
- Development of WA based rut deterioration models

Questions?

WARRIP WESTERN AUSTRALIAN ROAD RESEARCH

AND INNOVATION PROGRAM

For further information visit the WARRIP website www.warrip.com.au

AN INITIATIVE BY:

