

WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

# **Ground Instrumentation for Traffic Speed Deflectometer** (TSD)



AN INITIATIVE BY:





# Ground Instrumentation for Traffic Speed Deflectometer (TSD)

#### Main Roads Western Australia for

**Project Leader** 

Reviewed

**Quality Manager** 

Dr Jeffrey Lee Nof the Dr Gary Chai

PRP17037-02 June 2019



Australian Road Research Board ABN 68 004 620 651

#### Victoria

500 Burwood Highway Vermont South VIC 3133 Australia P: +61 3 9881 1555 F: +61 3 9887 8104 info@arrb.com.au

#### Western Australia

191 Carr Place Leederville WA 6007 Australia P: +61 8 9227 3000 F: +61 8 9227 3030 arrb.wa@arrb.com.au

#### New South Wales

2-14 Mountain Street Ultimo NSW 2007 Australia P: +61 2 9282 4444 F: +61 2 9280 4430 arrb.nsw@arrb.com.au

#### Queensland

21 McLachlan St Fortitude Valley QLD 4006 Australia P: +61 7 3260 3500 F: +61 7 3862 4699 arrb.qld@arrb.com.au

#### South Australia

Level 11, 101 Grenfell St Adelaide SA 5000 Australia P: +61 8 8235 3300 F: +61 8 8223 7406 arrb.sa@arrb.com.au

aup

| VERSION CONTROL                                                                                                  |                       |                                                                         |  |  |              |
|------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------|--|--|--------------|
| ARRB Project No PRP17037 Client Project No 2018-002                                                              |                       |                                                                         |  |  |              |
| Path                                                                                                             | t:\desiree hamann\190 | t:\desiree hamann\190628_prp17037_tsd ground instrumentation_final.docx |  |  |              |
| Author/Project Leader         Dr Jeffrey Lee         QM         Dr Gary Chai         Editor         Kieran Sharp |                       |                                                                         |  |  | Kieran Sharp |

| Task | Date         | Technical/Quality Checks                                                                               | Responsibility | By<br>(Initials) |
|------|--------------|--------------------------------------------------------------------------------------------------------|----------------|------------------|
| 1    | 27 May 2019  | Project Leader (PL) reviews completed draft report                                                     | Project Leader | JL               |
| 2    | 27 May 2019  | Spell check                                                                                            | Author         | JL               |
| 3    | 27 May 2019  | All tables and figures/images checked for source and permission for use (where appropriate/applicable) | Author         | JL               |
| 4    | 12 June 2019 | Library references and superseded references checked. Library comments addressed                       | Library/Author | ТМ               |
| 5    | 5 June 2019  | PL sends report to Support Unit                                                                        | Author         | JL               |
| 6    | 24 June 2019 | Support Unit checks format                                                                             | Support Unit   | MK               |
| 7    | 28 May 2019  | PL sends draft report to MRWA counterpart for comment                                                  | Project Leader | JL               |
| 8    | 5 June 2019  | Support Unit sends report to the Quality Manager (QM)                                                  | Support Unit   | JL               |
| 9    | 9 June 2019  | QM reviews report for research rigour, technical accuracy and overall quality of the report            | QM             | GC               |
| 10   | 12 June 2019 | QM sends report to Editor                                                                              | QM             | GC               |
| 11   | 18 June 2019 | Editor edits report (degree of editing to reflect quality of report)                                   | Editor         | KS               |
| 12   | 18 June 2019 | Editor returns report to QM                                                                            | Editor         | KS               |
| 13   | 21 June 2019 | QM reviews feedback from Editor and communicates with PL                                               | QM             | GC               |
| 14   | 24 June 2019 | PL addresses final comments                                                                            | Author         | JL               |
| 15   | 28 June 2019 | Support Unit checks final formatting                                                                   | Support Unit   | DH               |
| 16   | 1 July 2019  | Release to client with a cc. to the author, QM and editor@arrb.com.au Project Lea                      |                | EVA              |
| COMM | MENTS        |                                                                                                        |                |                  |

# SUMMARY

Analytical models used to design and rehabilitate pavements are becoming increasingly sophisticated. The most appropriate process for verifying the accuracy and usefulness of these new analytical models (as well as for calibrating the parameters included in these models) is to observe the behaviour of pavements in the field. One economical approach is to use velocity transducers (geophones) for determining the displacement of a pavement section under actual loads. If used properly, geophones can provide accurate deflection-time history data.

The main aim of this project – which was funded by MRWA under its WARRIP program – was to acquire a better understanding of TSD deflection data by installing ground instrumentation (i.e. sensor arrays using geophones and accelerometers) and monitoring the 'true' surface response when heavy vehicle traffic or other deflection testing devices travel over the pavement. Two deflection validation sites (near Perth) were established where the ground response of different deflection equipment was measured using the embedded instrumentation arrays.

The main findings of the project were as follows.

- The deflection profile varies with pavement type.
- For the Kwinana Freeway, there was a good match between the deflection data collected using the TSD and FWD in the front end of the deflection bowl (0 to 600 mm). For the Leach Highway, the deflection in the front end of the deflection bowl collected using the TSD and FWD also has a good match between 0 to 900mm offset. Without further testing, a conclusive explanation of the difference in the field measurements cannot be made. However, several explanations can be postulated, including:
  - The shape of the deflection bowl was very different at the two sites, and the Signal-to-Noise (SNR) ratio may have been higher for the stiffer pavement at Site One (Kwinana Freeway).
  - The degree of subgrade non-linearity (Chai et al. 2015) is often observed in FWD deflection (beyond 900 mm offset). It is postulated that the TSD measurement is also affected by the subgrade non-linearity behaviour. This was also reported for TSD data collected on Queensland pavements (Chai et al. 2016). At this stage, because of the different type of dynamic loading imposed by the two devices, the extent of this effect cannot be quantified at this point in time.
- To date, TSD data has been collected at 41–77 km/h in Kwinana Freeway, whilst on the Leach Highway, because of the limited post speed of 70 km/h, the TSD operated at 48–65 km/h. The results do not support the fact that the pavement response is significantly affected by the speed of testing. Additional tests are needed to confirm this statement.
- In summary, the geophone is more immune to amplification than the accelerometer. This is primarily because the accelerometer does not have a casing to protect it against any compression from the wheel load. Furthermore, the accelerometer is generally installed much closer to the pavement surface than the geophone.

# arrb

Although the report is believed to be correct at the time of publication, the Australian Road Research Board, to the extent lawful, excludes all liability for loss (whether arising under contract, tort, statute or otherwise) arising from the contents of the report or from its use. Where such liability cannot be excluded, it is reduced to the full extent lawful. Without limiting the foregoing, people should apply their own skill and judgement when using the information contained in the report.

- A system needs to be developed to assist the driver of the TSD to travel as close as possible to the instrumentation array and to minimise wander.
- The predominant frequency of both the FWD and TSD (at 77 km/h) is between 20 and 30 Hz. When the TSD travelled at a lower speed (48 km/h), a lower predominant frequency of 10 to 20 Hz was recorded. It is important that the predominant frequencies are not filtered during the subsequent signal processing.

Recommendations for future research are also presented in the report.

# CONTENTS

| •   | Rackground                                                                                                             | I<br>1               |
|-----|------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.1 | Background                                                                                                             | I                    |
| 1.2 | Research Aim                                                                                                           | 1                    |
| 1.3 | Report Structure                                                                                                       | 2                    |
| 2   | TSD MEASUREMENT SENSORS AND DEFLECTION DATA                                                                            | 3                    |
| 2.1 | Details of AUTC Method                                                                                                 | 4                    |
| 3   | SENSOR SELECTION AND INSTALLATION                                                                                      | 6                    |
| 3.1 | Introduction                                                                                                           | 6                    |
| 3.2 | Sensor Selection and Calibration3.2.1Selection of accelerometers3.2.2Selection of geophones                            | 6<br>7<br>7          |
| 3.3 | Sensor Calibration                                                                                                     | 9                    |
| 3.4 | Sensor Preparation and Installation                                                                                    | . 10                 |
| 3.5 | Data Acquisition System                                                                                                | . 15                 |
| 3.6 | Signal Processing                                                                                                      | . 16                 |
| 4   | FIELD INVESTIGATION                                                                                                    | . 18                 |
| 4.1 | Selection of Instrumentation Sites<br>4.1.1 Site One – Kwinana Freeway (H015)<br>4.1.2 Site Two – Leach Highway (H012) | . 18<br>. 18<br>. 19 |
| 4.2 | <ul> <li>Field Testing Program</li></ul>                                                                               | 20<br>20<br>22<br>25 |
| 5   | RESULTS OF FIELD TEST                                                                                                  | . 26                 |
| 5.1 | Site Uniformity and Repeatability                                                                                      | . 26                 |
| 5.2 | Typical Time Histories Collected from the Instrumentation Array                                                        | . 31                 |
| 5.3 | Comparison Between TSD and FWD Results                                                                                 | . 34                 |
| 5.4 | Comparison of TSD and Ground Instrumentation                                                                           | . 38                 |
| 5.5 | Comparison Between FWD and Ground Instrumentation<br>5.5.1 Near Field Sensor Amplification                             | . 40<br>. <i>41</i>  |
| 6   | DEFLECTION BOWL COMPARISON AND CORRELATION STUDY                                                                       | 44                   |
| 7   | CONCLUSIONS AND RECOMMENDATIONS                                                                                        | 46                   |

| 7.1  | Future Work |                                             | 6 |
|------|-------------|---------------------------------------------|---|
| REFE | ERENCES     |                                             | 8 |
| APPE | ENDIX A     | FWD TEST RESULT SUMMARY – KWINANA FREEWAY   | 1 |
| APPE | ENDIX B     | SUMMARY OF FWD TEST RESULTS - LEACH HIGHWAY | 5 |
| APPE | ENDIX C     | SLR CONSULTING INSTALLATION REPORT          | 9 |

# TABLES

| Table 3.1: | Details of Sensors in Site One (Kwinana Highway) and Site Two      | 0  |
|------------|--------------------------------------------------------------------|----|
|            | (Leach Highway)                                                    | 6  |
| Table 3.2: | Sensor descriptions                                                | 7  |
| Table 3.3: | Comparison of deflections obtained from impulse method, frequency  |    |
|            | response, and FWD tests using two calibrated geophones             | 9  |
| Table 4.1: | Layer thicknesses of core taken at SLK 56.73 along Kwinana Freeway | 19 |
| Table 4.2: | Layer thicknesses of core taken at SLK 12.28 along Leach Highway   | 20 |
| Table 4.3: | Comparison of sensor and FWD results after initial instrumentation |    |
|            | array installation                                                 | 23 |
| Table 5.1: | Measured instrumentation array response (geophone)                 | 39 |

# **FIGURES**

| Figure 2.1:  | Pavement deflection velocity under a rolling load (Rasmussen et al. 2008)                                  | 3        |
|--------------|------------------------------------------------------------------------------------------------------------|----------|
| Figure 2.2:  | Pavement deflection velocity and deflection bowl with deflection slopes (tangents) (Rasmussen et al. 2008) | 4        |
| Figure 3.1:  | Laboratory calibration of a geophone unit                                                                  | 10       |
| Figure 3.2:  | Photograph of an accelerometer, geophone, and thermocouple installed                                       | 10       |
| Figure 3.3:  | Close-up Dytran accelerometer with a resin coating to improve waterproofing at the connection              | 11       |
| Figure 3.4:  | Photograph of a Dytran accelerometer welded in a protective steel casing and anchoring system.             |          |
| Figure 3.5:  | Photograph of a geophone and the protective cap and anchoring system                                       | 12       |
| Figure 3.6:  | Photograph of a geophone with the protective cap and epoxy in the pavement                                 | 13       |
| Figure 3.7   | Installation details for accelerometers                                                                    |          |
| Figure 3.8:  | Installation details for deophones                                                                         |          |
| Figure 3.9:  | Installation details for location of both accelerometer and geophone in the same hole                      |          |
| Figure 3.10: | Annotated photograph of the installation site located on Leach<br>Highway, near Shelley WA                 | 15       |
| Figure 3 11  | Photograph of National Instruments data acquisition system                                                 | 16       |
| Figure 3.12: | Time domain and frequency power response of TSD traveling at                                               | 16       |
| Figure 3.13: | Time domain and frequency power response of TSD traveling at                                               | 10       |
| Figure 2 14: | 48 KIII/II                                                                                                 | 17       |
| Figure / 1   | Aerial photograph of Kwinana Ereeway test site                                                             | 17<br>10 |
| Figure 4.2   | Aerial photograph of Leach Highway test site                                                               |          |
| Figure 4.3   | TSD preliminary metropolitan scan along Kwinana Freeway (H015)                                             | 20       |
| Figure 4.4   | TSD preliminary metropolitan scan along Leach Highway (H012)                                               | 22       |
| Figure 4.5   | Impact hammer results: Kwinana Freeway                                                                     | 24       |
| Figure 4.6:  | Impact hammer results: Leach Highway                                                                       |          |
| Figure 4.7:  | Diagram illustrating the different FWD loading plate positions used in                                     |          |
| J            | October 2018                                                                                               |          |
| Figure 5.1:  | FWD maximum deflection and curvature                                                                       |          |

| Figure 5.2:  | TSD maximum deflection collected at Kwinana Freeway and Leach<br>Highway | 27 |
|--------------|--------------------------------------------------------------------------|----|
| Figure 5.3:  | Photograph of Doppler laser in front of the rear dual-tyre axle          | 28 |
| Figure 5.4:  | ACD images from subsequent TSD runs along Kwinana Freeway                | 29 |
| Figure 5.5:  | ACD images from subsequent TSD runs along Leach Highway                  | 30 |
| Figure 5.6:  | Typical velocity time history when TSD passes by instrumentation array   | 31 |
| Figure 5.7:  | Typical displacement time history when TSD passes by instrumentation     |    |
| •            | array                                                                    | 31 |
| Figure 5.8:  | Typical acceleration time history when TSD passes by instrumentation     |    |
| •            | array                                                                    | 32 |
| Figure 5.9:  | Typical velocity and acceleration time history of an FWD impact load     | 32 |
| Figure 5.10: | Comparison of velocity and acceleration time records                     | 33 |
| Figure 5.11: | Asymmetric rolling deflection bowl measured by the instrumentation       |    |
| •            | array                                                                    | 33 |
| Figure 5.12: | Acceleration, velocity and displacement time histories of TSD passing    |    |
| 0            | the test array along Kwinana Freeway (left) and Leach Highway (right)    | 34 |
| Figure 5.13: | Comparison of maximum deflections on Kwinana Freeway (left) and          |    |
| 0            | Leach Highway (right)                                                    | 35 |
| Figure 5.14: | Comparison of curvature function (D0 – D200) on Kwinana Freeway          |    |
| 0            | and Leach Highway                                                        | 35 |
| Figure 5.15: | Comparison of selected deflection bowls collected from TSD and FWD       | 36 |
| Figure 5.16: | TSD deflection and FWD deflection comparison at different offsets        |    |
| 0            | along Kwinana Freeway                                                    | 37 |
| Figure 5.17: | TSD deflection and FWD deflection comparison at different offsets        |    |
| 5            | along Leach Highway                                                      | 38 |
| Figure 5.18: | Comparison of TSD runs and instrumentation response: Kwinana             |    |
| 5            | Freeway                                                                  | 39 |
| Figure 5.19: | Comparison of TSD runs and instrumentation response: Leach               |    |
|              | Highway                                                                  | 40 |
| Figure 5.20: | Comparison of FWD measurements and instrumentation array:                |    |
| 5            | Kwinana Freeway                                                          | 41 |
| Figure 5.21: | Comparison of FWD measurements and instrumentation array: Leach          |    |
|              | Highway                                                                  |    |
| Figure 5.22: | Comparison of selected deflection bowls collected from TSD and FWD       |    |
| Figure 5.23: | Comparison of displacement measured by geophones in the array            |    |
|              | when FWD impacted at different lateral positions                         |    |
| Figure 5.24: | Comparison of displacement measured by accelerometers in the array       |    |
|              | when FWD was impacted at different lateral positions                     |    |
| Figure 6.1:  | Correlation Chart – NACOE                                                |    |
| Figure 6.2:  | Correlation between TSD and FWD maximum deflection                       |    |
| Figure 6.3:  | Correlation between TSD and FWD curvature function (D0–D200)             |    |
|              |                                                                          |    |

# 1 INTRODUCTION

## 1.1 Background

Pavement deflection testing has historically been carried out using Benkelman Beams, Le Croix-type deflectographs or, particularly in more recent times by, Falling Weight Deflectometer. All three of these technologies collect data at low travelling speeds and are therefore poorly suited to the collection of continuous data along large lengths of road or of entire road networks.

The Traffic Speed Deflectometer (TSD) system developed by Greenwood Engineering in Denmark represents the first commercially available system that collects near continuous pavement deflection data at highway traffic speeds. As of 2019 there are two additional devices that can collect deflection data at highway speeds – ARA Rolling Wheel Deflectometer (RWD), Dynatest's RAPTOR<sup>™</sup> Rolling Weight Deflectometer (RWD) – but neither of these are available for commercial purchase.

In 2014, the Australian Road Research Board (ARRB) acquired a TSD. After commissioning of the acquired TSD, ARRB added extra functional condition assessing sensors and integrated these into a single data acquisition system and denoted the resultant fully integrated function and structural assessment testing vehicle the iPAVe.

Since then, the iPAVe has been conducting annual network surveys in Queensland, New South Wales, and New Zealand. After a successful demonstration in 2016, Main Roads Western Australia (MRWA) commissioned ARRB to conduct a whole-of-network iPAVe survey of Western Australia's state-controlled roads.

Separate to the MRWA survey, a WARRIP project was established to investigate the differences in pavement response to the loads applied by the Falling Weight Deflectometers that MRWA were experienced in using, and the TSD component of the iPAVe system.

This report describes the installation of sensors within the pavements at two on-road sites located close to Perth. A comparison of the deflection bowls measured by the two deflection technologies and the in-pavement sensors is also included.

Note, as the only component of the integrated ARRB iPAVe system being examined in this report is the TSD component, and to enable the report to relevant to an international audience, this report will use the term TSD to denote both the deflection measuring system and the vehicle within which it was contained.

# 1.2 Research Aim

Analytical models used to design and rehabilitate pavements are becoming increasingly sophisticated. The most appropriate process for verifying the accuracy and usefulness of these new analytical models (a well as for calibrating the parameters included in these models) is to observe the behaviour of pavements in the field. One economical alternative is to use velocity transducers (geophones) for determining the displacement of a pavement section under actual loads. If used properly, geophones can provide quite accurate deflection-time history data (Nazarian & Bush 1989).

The main aim of this project – which was funded by MRWA under its WARRIP program – was to acquire a better understanding of TSD deflection data by installing ground instrumentation (i.e. sensor arrays using geophones, accelerometers, and strain gauges) and monitoring the 'true' surface response when heavy vehicle traffic or other deflection testing devices travel over the pavement. Two deflection validation sites (near Perth) were established where the ground

response of different deflection equipment was measured using the embedded instrumentation arrays.

## 1.3 Report Structure

Section 1 of the report provides the background of the TSD and outlines the research aim of this project. In Section 2, details of the TSD measurement sensors and the analysis method adopted in Australia is presented. Section 3, presents details of the sensor selection and installation procedure used at both the instrumentation sites. Section 4, presents the work carried out to identify the locations of the two instrumentation sites, and the results of the field experimental work (collected by the instrumentation array, FWD and TSD) are presented. The correlation between the TSD and the FWD deflections from this study and from a recent NACoE study is presented in Section 6. Lastly, conclusion and future recommended work presented in Section 7.

# 2 TSD MEASUREMENT SENSORS AND DEFLECTION DATA

TSD applies a 10 tonne load via a single axle with dual tyres located as the trailer axle of a semi-trailer vehicle travelling at traffic speed (nominally 80 m/h). The measurement system uses Doppler lasers to measure the vertical surface velocity of the deflected pavement resulting from this applied load. The ARRB TSD system uses lasers fixed at six locations along the mid-line of the rear left dual tyres and in front of the axle (at 100, 200, 300, 600 and 900 mm offsets). D<sub>o</sub> is defined as the deflection directly underneath the rear axle. The seventh Doppler laser, known as the reference laser, is positioned 3 500 mm away from the rear axle load. The reference laser is presumed to remain relatively unaffected by the load applied by the axles and, as such, it measures very little vertical pavement deflection velocity.

The TSD measures the vertical velocity of the pavement surface while traveling at traffic speed (nominally 80 km/h). A deflection bowl can be obtained by integrating the velocity slopes from each of the doppler lasers. Parameters such as the maximum deflection, curvature, and other structural condition indices can then be derived from the deflection bowl. Two methods are available for converting TSD deflection velocity slope to deflection:

- Euler-Bernoulli beam model (Rasmussen et al. 2008), more commonly known as the 'Greenwood Model'.
- ARRB 'area under the curve' (AUTC) method (Muller & Roberts 2013).

During operations, the Doppler sensors measure vertical velocities of the deflected pavement surface at discrete points and, when divided by the instantaneous vehicle speed, they produce deflection slopes ( $V_v/V_h$ ) at those points (Rasmussen et al. 2008). Figure 2.1 shows the pavement deflection velocity vectors under a rolling wheel. Together with the deflection velocity, the corresponding deflection bowl is shown in Figure 2.2, where deflection slopes (tangents) are displayed. The pavement deflections can be determined by integrating the deflection slope curve using a closed-form solution of a mechanical model such as an elastic beam on a Winkler foundation (Rasmussen et al. 2008).

Figure 2.1: Pavement deflection velocity under a rolling load (Rasmussen et al. 2008)



Figure 2.2: Pavement deflection velocity and deflection bowl with deflection slopes (tangents) (Rasmussen et al. 2008)



The current algorithm being used by the manufacturer is based on a statistical method that fits a curve through the TSD data (Pedersen 2013); it also accounts for asymmetry in the deflection bowl (Nasimifar et al. 2016).

Various additional algorithms are available to compute pavement vertical surface deflection from surface velocity data. The main methods are the Euler-Bernoulli beam model (Rasmussen et al., 2008), ARRB "Area Under the Curve" (AUTC) method (Austroads 2014) and (Muller & Roberts 2013), and the Weibull functional form method (Zofka et al. 2014).

Additionally, recent research conducted in the United States (Nasimifar et al. 2016) presented two methods, namely the velocity-based and the deflection-based approaches to estimate the pavement layer moduli for network-level analysis using the TSD. Furthermore, a deflection-based approach to back-calculate the layer moduli from TSD measured deflections is currently being investigated by ARRB in Queensland to explore the use of TSD technology in pavement rehabilitation design.

# 2.1 Details of AUTC Method

The AUTC method was first developed following the initial TSD trials conducted in Australia in 2010 (Muller & Roberts 2013). The method involves fitting the TSD slope measurements and numerically integrating them over the length of the deflection bowl, working towards the wheel load. Details are as follows:

- The base TSD data consists of a set of vertical pavement velocities, referenced against horizontal offset spaced along the axis of the wheelpath and away from the loading of the dual-tyred truck wheels. This data is termed the velocity profile.
- The value of the velocity at each point is a function of the pavement strength, the offset of the Doppler laser, the velocity sensor from the centre point of loading, and the horizontal speed of the TSD vehicle (which affects the speed of the vertical loading).
- The slope is the ratio between the vertical and horizontal velocities at each measurement point and the actual physical slope of the pavement surface within the deflection bowl centred under the moving TSD's rear wheel.
- By plotting slope values against the offsets from the load point as a slope profile curve (analogous to the previously-mentioned velocity profile), it is possible to show that the cumulative area under the slope profile working from the tail is exactly equal to the vertical deflection at that point.
- The vertical difference between any two deflection points, such as for the bowl curvature,  $(D_0-D_{200})$ , is equal to the area under the slope profile curve between these two points.

The AUTC method has been used when reporting TSD data in Australia. Therefore, only the AUTC method will be used in this report.

# 3 SENSOR SELECTION AND INSTALLATION

## 3.1 Introduction

SLR Consulting Australia Pty Ltd (SLR) was engaged by ARRB to assist with the permanent installation of instrumentation arrays in two pavements in the greater Perth area. A report prepared by SLR and reproduced in Appendix C, presents details of the installation. The locations of the sites are:

- Site One southbound left lane (L2) of the Kwinana Freeway (H015)
- Site Two southbound left lane of the Leach Highway (H012), an urban arterial in the southern suburb of Shelley in Perth.

The sensors were installed at night on 11–12 September 2018 (Site One) and 12–13 September 2018 (Site Two).

# 3.2 Sensor Selection and Calibration

The sensors in Site One (Kwinana Freeway) were installed 500 mm from the edge line marking, whilst, in Site Two (Leach Highway), they were located 1 m from the road kerbs. Details of the instrumentation are presented in Table 3.1, while Table 3.2 provides a brief description of the types of sensors used in the study. After the installation of the sensors, polyurethane resin (PU200) was poured into the drilled holes.

|              |                        | Dimensions o     | Succing to ediacout |             |
|--------------|------------------------|------------------|---------------------|-------------|
| drilled hole | Sensor Type            | Diameter<br>(mm) | Depth<br>(mm)       | sensor (mm) |
| В            | Geophone               | 70               | 70                  | 200         |
| С            | Accelerometer          | 50               | 30                  | 200         |
| D            | Accelerometer/geophone | 70               | 30 & 70             | 100         |
| E            | Accelerometer          | 50               | 30                  | 150         |
| F            | Accelerometer          | 50               | 30                  | 150         |
| G            | Accelerometer          | 50               | 30                  | 300         |
| Н            | Accelerometer          | 50               | 30                  | 200         |
| I            | Thermocouples          | 50               | 40                  |             |

| Table 3.1: Details of Sensors in Site One (H | Kwinana Highway) and Site Two (Leach Highway) |
|----------------------------------------------|-----------------------------------------------|
|----------------------------------------------|-----------------------------------------------|

#### Table 3.2: Sensor descriptions

| Label on<br>drilled hole | Sensor type   | Brief description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Geophone      | Geophones with an internal resistance of 400 ohm were used to measure vertical velocity. Shaker tests were carried out on all geophones and their natural frequency was nominally 10.5 Hz with nominal sensitivity of 28 V per m/s above the natural frequency. The terminals of the geophones were coated with resin for moisture protection. Subsequently, a                                                                                                                                      |
|                          |               | protective cap was glued over the terminals of each geophone.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| B, D                     |               | An M8 anchor was cold-welded (JB Weld) to the underside of each geophone.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          |               | On-site, 9 mm pilot holes were drilled into the bottom of each hole. The pilot hole was filled with epoxy glue (5 min Araldite) and the anchor was glued into the hole. Epoxy glue was also used to level the contact zone between the geophone and the bottom of the hole. A protective plastic cup was glued over the geophones to ensure that the resin does not directly touch the geophone due to concerns that stresses imposed on the geophones' bodies may give rise to incorrect readings. |
|                          | Accelerometer | Dytran model 3305A3 accelerometers with a nominal sensitivity of 500 mV/g were used for measuring the vertical acceleration.                                                                                                                                                                                                                                                                                                                                                                        |
|                          |               | The accelerometers were attached to microdot leads and coated in a protective resin.                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          |               | Subsequently, the lead to the accelerometer connection was heat-shrinked.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C,E,F,G,H                |               | The accelerometers were cold-welded (JB Weld) into steel enclosures and fixed at the correct angle within the enclosure with bolts. Once the cold-weld had cured, the bolts were removed and more cold-weld was injected through the bolt holes.                                                                                                                                                                                                                                                    |
|                          |               | M8 anchors were bolted into the steel enclosures. The anchors protruded typically by 40-50 mm.                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          |               | 9 mm pilot holes were drilled into the bottom of each hole. The pilot hole was filled with epoxy glue (5 minute Araldite) and the anchor was glued into the hole. Epoxy glue was also used to level the contact zone of the steel enclosure and the bottom of the hole.                                                                                                                                                                                                                             |
| Ι                        | Thermocouples | Welded tip 'gas and watertight' PTFE thermocouples Type K with 10 m leads were used. The thermocouples were pushed into holes drilled into the pavement and epoxy glued in place to ensure they stayed in place as the resin was poured. The thermocouples were used to measure the asphalt temperature.                                                                                                                                                                                            |

## 3.2.1 Selection of accelerometers

Accelerometers can also be used to monitor the vertical acceleration of the pavement surface. By double-integrating the measured acceleration time history, deflection (or displacement) profiles can be determined.

With modern solid-state accelerometer units, the size of the accelerometer can be very small (similar to the one used in this project) and it is able to withstand high G forces upon impact. The other attractive feature of using accelerometers is the simple calibration procedure that covers a wide range of frequencies, plus only a single calibration curve (Volt per g) is needed.

#### 3.2.2 Selection of geophones

The monitoring of long-term pavement performance has been conducted by many road agencies worldwide. An alternative method for collecting deflection-time history pavement performance data is to install and monitor geophones (velocity transducers). Geophones were selected for this project because:

- they can be used effectively to monitor deflections in a pavement
- the method used to measure the deflection of a pavement is similar to that used by the FWD.

A study using geophones to measure pavement deflection was conducted by Nazarian & Bush (1989) in Texas. The study reviewed the different methods that may be used to determine the deflection-time history of a pavement section from geophone (velocity transducer) data.

A brief overview of the methods presented in their paper is presented here. The two methods used are: (a) Impulse Method, and (b) Frequency Response Method.

The **impulse method** is adopted from the shock engineering discipline. In this approach, the maximum response is only considered rather than the complete time history or the frequency content of the response. To implement this method, the impulse was analysed in the frequency domain. This process is repeated to determine the shock response spectrum (SRS). The SRS is the relationship between the ratio of the maximum response and the maximum input, versus the natural frequency of the system for a given damping ratio. The geophone has a natural frequency of 4.73 Hz and the damping ratio is 0.64.

The geophone generates a voltage that is related to the velocity of the geophone. The following steps are involved in converting the voltage to deflection:

- 1. Convert the voltage to velocity by dividing the record by the transductivity of the geophone.
- 2. Divide the converted velocity time record by the adjustment factor, C<sub>g</sub>, to compensate for the effect of the geophone on the signal.
- 3. Integrate the signal with respect to time to obtain the maximum deflection.

The following formula is used to compute the deflection:

DEFLECTION = FACTOR \* INTVOLT (1)  
FACTOR = 
$$1/(T_g * C_g)$$

where

DEFLECTION =Deflection of pavement at geophone baseFACTOR =1/(Tg\*Cg), the correction factor for shape and duration of<br/>impulse and transductivity of the geophoneINTVOLT =Maximum output voltage after integration of raw<br/>geophone signal saved in the recording device.

Nazarian and Bush (1989) provided an example of how the maximum deflection computed from voltage output from the geophone was compared with the deflections measured by the FWD. The results were as follows:

| INTVOLT =                       | 3.37 mv.msec                                                       |
|---------------------------------|--------------------------------------------------------------------|
| T <sub>g</sub> =                | 0.57                                                               |
| C <sub>g</sub> =                | 0.75                                                               |
| FACTOR =                        | $1/(T_g^*C_g) = 2.33$                                              |
| Deflection =                    | 3.37 * 2.33 = 7.9 mil (0.20066 mm)                                 |
| Actual FWD maximum deflection = | 7.7 mil (0.19558 mm) (3 percent difference between the two values) |

The **Frequency Response method** uses the Fourier transform algorithm. The advantage of this method over the impulse method is that the entire displacement time history can be determined, whereas, with the impulse method, only the maximum deflection could be found. In the frequency response method, no simplifying assumption about the nature of the load is made. As such, the results are more accurate than those obtained using the impulse method.

The procedure for determining deflections from the geophone response is as follows:

- The geophone is calibrated using the procedure outlined below.
- Fourier transform was used to convert the time domain signal into the frequency domain.

- The Fourier-transformed signal is divided by the calibration curve.
- The result is then inverse-Fourier transformed to obtain the deflection time history and the maximum deflection.

To implement the two methods, **calibration of the geophone** is required. The commonly-used method of calibration is to use a shake-table. In this method of calibration, a reference accelerometer is rigidly connected to the shake-table and the geophone, which is in turn rigidly connected to either the accelerometer or the shake-table. The shake-table is vibrated with a sweep-sine steady-state source. The response of the accelerometer is integrated to obtain its response in term of velocity. The ratio of the geophone output voltage and the integrated accelerometer record at each frequency is the calibration curve for the geophone. To normalise the curve, the calibration value is divided by the tranductivity of the geophone (denoted by  $T_g$ ), which is 0.57 volt/in./sec.

The deflections determined from the calibrated geophones, using both the impulse and frequency response methods, are presented in Table 3.3. The corresponding deflection values obtained directly from the FWD testing are also shown.

| Deflection, mil   |                |                           |             |
|-------------------|----------------|---------------------------|-------------|
| Sensor number     | Impulse method | Frequency response method | FWD         |
| 2 R               | 7.3            | 7.4                       | 6.9         |
| 3                 | 6.6            | 6.8                       | 6.6         |
| 2 R               | 7.2            | 7.4                       | 7.3         |
| 4                 | 5.9            | 6.0                       | 5.9         |
| 2 R               | 7.2            | 7.3                       | 7.2         |
| 5                 | 5.3            | 4.7                       | 5.3         |
| 2 R               | 7.2            | 7.3                       | 7.2         |
| 6                 | 4.6            | 4.7                       | 4.6         |
| 2 R               | 7.1            | 7.3                       | 7.4         |
| 7                 | 4.0            | 4.1                       | 4.1         |
| Average Reference | 7.20 (+0.07)   | 7.34 (0.05)               | 7.22 (0.19) |

| Table 3.3: | Comparison of | deflections of | obtained from | impulse method, | frequency | response, | and FWD t | ests using two |
|------------|---------------|----------------|---------------|-----------------|-----------|-----------|-----------|----------------|
| calibrated | geophones     |                |               |                 |           |           |           |                |

Source: (Nazarian & Bush 1989).

From the test, it can be observed that, at each sensor location, the three methods yielded deflections that were within 4% of one another. Therefore, the study demonstrated the precision and accuracy of the methods used to determine the pavement deflection using geophones (velocity transducers).

# 3.3 Sensor Calibration

When compared with an accelerometer, a geophone is a simple mass-on-spring system that is fairly reliable. However, the downside is that the voltage signal is only linearly proportional to the measured velocity if the frequency range of interest is well above the resonant frequency of the system. The calibration curve of the geophone used in this project is shown in Figure 3.1. This geophone has a resonant frequency of around 12–15 Hz, and the calibration curve is only expected to be flat for frequencies over 40 Hz. In other words, using a geophone requires an extra step in the analysis process. The extra step involves calibrating each geophone on a dynamic shaker-table to accurately determine the calibration curve for the region between 5–40 Hz (i.e. the frequency range over which most of the FWD and TSD measurements were conducted). This is discussed further in Section 3.6.

It is also worth noting that, while a geophone with a very low resonant frequency can be purchased off-the-shelf (e.g. 1 Hz and 2 Hz geophone/seismograph), they are usually very large mass and soft spring systems which would be too big for use in this project.



Figure 3.1: Laboratory calibration of a geophone unit

Geophone resonant frequency

## 3.4 Sensor Preparation and Installation

Before the sensors were installed in the field, several modifications were needed to improve the reliability and longevity of the sensors. The off-the-shelf accelerometers and geophones required waterproofing and strengthening before they could be embedded in the pavement. In this section, the preparation work undertaken by SLR Consulting is outlined. For further details, readers are referred to Appendix C.

Figure 3.2 is a photograph of the installed sensors after they had been embedded in the pavement. The sensors measure the vertical acceleration (using accelerometers), vertical velocity (using geophones), and asphalt temperatures (using thermocouples).

Figure 3.2: Photograph of an accelerometer, geophone, and thermocouple installed



## Accelerometer

## Geophone

## Thermocouple

The weakest link in a solid-state accelerometer is often at the junction of the small connector between the accelerometer and the cables. In order to reduce moisture ingress and faulty cable connections, each accelerometer was protected by a layer of thick resin coat, as shown in Figure 3.3.

arrp



Figure 3.3: Close-up Dytran accelerometer with a resin coating to improve waterproofing at the connection

To further strengthen the accelerometer, each accelerometer was encapsulated in a steel casing. One of the concerns at the start of the project was that the shallow asphalt surfacing cover over the accelerometer may not be adequate to secure the sensor in the pavement under live heavy vehicle traffic. The encapsulate system design also included an anchor to secure the sensor in the pavement layer. During installation, a hole in the pavement was predrilled, and the anchor was epoxied into position. Figure 3.4 shows the finished accelerometer configuration.



#### Figure 3.4: Photograph of a Dytran accelerometer welded in a protective steel casing and anchoring system



Accelerometer prior to installation (above) and installed in hole before being covered with resin (below).



Similar to the accelerometer, protection and anchoring systems were needed for the geophones before they could be deployed in the field. Figure 3.5 and Figure 3.6 show the completed geophone and the configuration embedded at both sites.







#### Figure 3.6: Photograph of a geophone with the protective cap and epoxy in the pavement

The success of this project relied on paying attention to the installation of the sensors. Meetings were held between ARRB and MRWA staff to agree on the installation details as shown in Figure 3.7, Figure 3.8 and Figure 3.9. It is worth noting that one of the holes in the instrumentation array included both a geophone and an accelerometer (Figure 3.9). The purpose of this hole was to confirm that both the accelerometer and the geophone reported the same response.

#### Figure 3.7: Installation details for accelerometers



- A bedding layer at the bottom of the corehole (e.g. using PU200) may be needed to achieve a flat and horizontal surface.
- The core hole depth shown did not allow for additional bedding thickness. The depth of the corehole will need to be increased on-site to achieve the minimum core depth to accommodate the sensor after bedding is in place.

#### Figure 3.8: Installation details for geophones



- A bedding layer at the bottom of the corehole (e.g. using PU200) may be needed to achieve a flat and horizontal surface.
- The core hole depth shown did not allow for additional bedding thickness. The depth of the corehole will need to be increased on-site to achieve the minimum core depth to accommodate the sensor after bedding is in place.





- A bedding layer at the bottom of the corehole (e.g. using PU200) may be needed to achieve a flat and horizontal surface.
- The core hole depth shown did not allow for additional bedding thickness. The depth of the corehole will need to be increased on-site to achieve the minimum core depth to accommodate the sensor after bedding is in place.

The sensors were installed between 13–15 September 2018. A photograph of the lateral and longitudinal offsets is shown in Figure 3.10. The longitudinal layout (in the direction of TSD travel) was designed to match the offset spacing of the TSD on-board doppler lasers.



Figure 3.10: Annotated photograph of the installation site located on Leach Highway, near Shelley WA

# 3.5 Data Acquisition System

After careful review of available data acquisition (DAQ) systems, the project team selected the National Instruments (NI) Compact-DAQ system. The DAQ system is self-contained with a built-in computer running Windows 7. When combining the versatile and powerful software system Labview<sup>™</sup> from NI, the system can capture and analyse the fast waveforms that this project needed. All the dynamic signals were captured with a sampling frequency of 2048 Hz. A photograph of the data acquisition system is shown in Figure 3.11.

The NI equipment modules purchased for this project included:

- Compact DAQ Controller (cDAQ-9133) a data acquisition unit that includes Intel Atom dual-core processing for data-logging and embedded monitoring using different cDAQ input modules.
- Analog Vibration Input Module (NI-9234) measures signal from Integrated Electronics Piezo-Electric (IEPE) such as accelerometers and non–IEPE sensors such as geophones.
- Strain/Bridge Input Module (NI-9237) measures up to four bridge-based strain sensors with supporting signal conditioning.
- Temperature Input Module (NI-9211) measures temperature readings from thermocouples.

Figure 3.11: Photograph of National Instruments data acquisition system



# 3.6 Signal Processing

The typical time record and the frequency content of the TSD operating at 77 km/h and 48 km/h are shown in Figure 3.12 and Figure 3.13 respectively. A similar time and frequency domain record of a TSD is shown in Figure 3.14.



Figure 3.12: Time domain and frequency power response of TSD traveling at 77 km/h



#### Figure 3.13: Time domain and frequency power response of TSD traveling at 48 km/h





The predominant frequency of both the FWD and TSD (at 77 km/h) was between 20 and 30 Hz. As the TSD travels at a lower speed (48 km/h), a lower predominant frequency of 10 to 20 Hz was measured. During the subsequent signal processing, it was important that the predominant frequencies were not filtered.

The signal outputs obtained from a geophone and an accelerometer are different. As a result, the geophone data was bandpass filtered between 1 Hz and 500 Hz, and then integrated to displacements and differentiated to accelerations. The accelerometer data passed through a bandpass filter with cut-off frequencies between 5–500 Hz. The displacements were computed by double-integrating the acceleration data.

# 4 FIELD INVESTIGATION

The primary focus of this project is to measure and compare the deflection measurement made using a Traffic Speed Deflectometer (TSD), a Falling Weight Deflectometer (FWD), and the surface deflection obtained from the ground instrumentation array.

## 4.1 Selection of Instrumentation Sites

Two ground instrumentation sites near Perth were selected for this project. The criteria considered when selecting the sites were as follows:

- the site had a relatively uniform deflection profile and was free of surface defects
- the site was not going to be resurfaced and rehabilitated in the short term
- the TSD would be testing the section in the next three years
- structural responses cover both weak and stiff pavement structures.

After discussion with MRWA staff, the project team identified two sites. The first site was located along the Kwinana Freeway approximately 1.5 km south of the Paganoni Road exit. It was near the 'Trial Mile' section which MRWA had been monitoring over the past few years. The second site was a section of the Leach Highway, near Shelley in Perth.

## 4.1.1 Site One – Kwinana Freeway (H015)

The first site was located along the southbound left lane (L2) of the Kwinana Freeway. An aerial photograph showing the test site location is shown in Figure 4.1. The pavement structure comprises a full-depth asphalt pavement over a limestone subbase. A pavement core was taken at SLK 56.73, and the core thicknesses are summarised in Table 4.1. The section has an average annual daily traffic (AADT) of 15,941 and 11.1% of heavy vehicles (2012). The posted speed of this section is 110 km/h.





| Table 4.1: | Laver thicknesses | of core taken at SLI | K 56.73 along | Kwinana Freeway |
|------------|-------------------|----------------------|---------------|-----------------|
|            |                   |                      | a oon o along |                 |

| Material Type | Average Depth (mm) | Average Layer Thickness (mm) |
|---------------|--------------------|------------------------------|
| Asphalt       | 0–280              | 280                          |
| Limestone     | 280–500            | 220                          |
| Sand          | 500 +              |                              |

## 4.1.2 Site Two – Leach Highway (H012)

The Leach Highway is an urban arterial in the southern suburb of Shelley in Perth. The instrumentation was installed in the southbound outer lane (L3). An aerial photograph showing the test site location is shown in Figure 4.2. The pavement structure comprises a thin asphalt wearing course over a bitumen-stabilised limestone layer and a limestone subbase. A pavement core was taken at SLK 12.28, and the core thicknesses are summarised in Table 4.2. The section has an Average Annual Daily Traffic (AADT) of 19,232 and 8% of heavy vehicles (2016). The posted speed of this section is 70 km/h.



Figure 4.2: Aerial photograph of Leach Highway test site

| Tuble HEL EUTOR CHORE OF OTO CAROLINE CELL LEVELONG EOUON HIGHWAY |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|

| Material Type                      | Average Depth (mm) | Average Layer Thickness (mm) |
|------------------------------------|--------------------|------------------------------|
| Asphalt                            | 0–40               | 40                           |
| Bitumen stabilised limestone (BSL) | 40–190             | 150                          |
| Limestone                          | 190–330            | 140                          |
| Sand                               | 330 +              |                              |

# 4.2 Field Testing Program

The primary focus of this project was to measure and compare the deflections measured using a Traffic Speed Deflectometer (TSD), a Falling Weight Deflectometer (FWD), and the surface deflection obtained from the ground instrumentation array. Details of the sensor selection and sensor installation were reported in Section 3. In this section, different stages of the testing are listed and explained further in the sub-sections:

- identify pavement sites in Perth and check uniformity
- install instrumentation array and validate installation using an FWD and instrumented impact hammer
- monitor ground instrumentation output during TSD pass-by and FWD testing.

## 4.2.1 Identify pavement sites and check uniformity

At the time of this project, the post-processing software from Greenwood Engineering limited the reporting length to 10 m. In other words, each deflection reading from the TSD was an average value over a 10 m length of pavement. This difference needs to be highlighted when comparing the data with the discrete readings recorded the ground instrumentation array. Each sensor within the array measures the surface response for a single location spatially. In order to have a fair



comparison between the TSD deflections and the deflections measured by each in-ground sensor, the project team selected areas that had uniform deflection.

To minimise the cost of lane closures, a screening exercise was carried out across the WA metro Perth network. As part of the TSD demonstration trial conducted in April 2018, several MRWA-controlled roads were surveyed, and deflection data collected from the Kwinana Freeway and the Leach Highway was made available to the project team. This data was used to identify potential candidate sites. The deflection data for the section along the Kwinana Freeway collected on 14 April 2018 is shown in Figure 4.3. The red box highlights the location where it was proposed to install the ground instrumentation array.

The deflection data for the section along Leach Highway was collected on 11 April 2018, as shown in Figure 4.4. The data from the preliminary metropolitan scan was very important because it indicated the likely deflection at the instrumented site after the gauges were installed.

After the installation, the uniformity of each section was checked by running the FWD along the section at 5 m increment spacings. Further details of the FWD testing is presented in Section 5 of this report.



#### Figure 4.3: TSD preliminary metropolitan scan along Kwinana Freeway (H015)

56.5

56.4

56.3

56.7

Chainage (km)

56.8

56.9



#### Figure 4.4: TSD preliminary metropolitan scan along Leach Highway (H012)

#### 4.2.2 Validate instrumentation array installation shortly after sensor installation

For two consecutive nights between 13–15 September 2018, the project team carried out the sensor installation on both the Kwinana Freeway and Leach Highway. A detailed discussion of the sensor installation was presented in Section 3.4 of this report. In this section, the activities conducted to validate that the instrumentation array was functional are reported.

Immediately after the installation (i.e. after the polyurethane epoxy infill had cured), several impact loads including the FWD and an instrumented hammer were applied to the pavement and the outputs of the instrumentation array compared. The FWD and the instrumented hammer were selected because the mechanics of these two methods are well understood and can be used as a reference load/test.

Table 4.3 presents the comparison between an FWD measured deflection profile and a profile measured by the instrumentation array. It can be seen that the in-ground sensor was reporting similar deflections to the FWD deflections, apart from a few measurements near the centre of the FWD loading plate. At the time of the testing, the reason for this anomaly was not clearly understood, and so further tests were carried out in October 2018 (refer Section 4.2.3).



#### Table 4.3: Comparison of sensor and FWD results after initial instrumentation array installation

During the sensor installation, impact hammer tests were also carried out at selected locations. The force and the acceleration response immediately adjacent to the impact location were recorded. The acceleration spectra were calculated and subsequently converted to mobility and receptance spectra. The results from the impact hammer, expressed in terms of receptance (deflection over applied force in m/N), are shown in Figure 4.5 and Figure 4.6. As the inverse of the receptance spectrum is the dynamic stiffness spectrum, the dynamic stiffness spectra were then calculated. The lower the inverse of the receptance spectrum, the higher the pavement stiffness.



Figure 4.5: Impact hammer results: Kwinana Freeway

Figure 4.6: Impact hammer results: Leach Highway



It was confirmed that the Kwinana Freeway (330 MN/m) had a much higher stiffness than the Leach Highway (55 MN/m). While the load level and impact frequency of an impact hammer are very different from an FWD; it would still be worthwhile to compare the stiffness measured using the two different methods.

For the Kwinana Freeway, the impulse hammer gives a stiffness of 330 MN/m. Based on a 50 kN FWD load, the stiffness can be converted to an equivalent deflection of about 150 microns. For the Leach Highway, a stiffness of 55 MN/m can be converted to an equivalent deflection of about 900 microns.

In terms of the FWD measurements made in September 2018 at the instrumentation array location, the Kwinana Freeway reported a normalised deflection of 183 microns, and the Leach Highway had an equivalent deflection of 620 microns. The results from the Kwinana Freeway were similar, but there was a large difference in the weaker Leach Highway because of the high non-linearity, as would be expected.

## 4.2.3 Monitoring Ground Instrumentation Output During TSD Pass-by and FWD Tests

After the successful installation of the instrumentation array in September 2018, the project team organised additional FWD tests and multiple runs by the TSD were also carried out. On the night on 27 October, the project team conducted the following tests:

- FWD testing at 5 m spacings to check the deflection uniformity in the vicinity of the instrumentation array
- FWD testing at different lateral offset as illustrated in Figure 4.7
- Multiple TSD runs at different speeds.





# 5 RESULTS OF FIELD TEST

# 5.1 Site Uniformity and Repeatability

For the reasons provided in Section 4.2.1, in order to allow a fair comparison between the TSD deflection (i.e. every TSD deflection point is an average value over a 10 m spacing) and discrete response from an FWD and the ground instrumentation sensors, the deflection in the test site needs to be fairly uniform.

The FWD deflections were collected at 5 m spacing, from 25 m before and 25 m after the location of the instrumentation array. The normalised maximum deflections (ND0) and normalised curvatures (NDCURV) for both the Kwinana Freeway and Leach Highway sites are shown in Figure 5.1. The measurements, conducted the night before the TSD past over the site, confirmed the uniformity of both test sites.



#### Figure 5.1: FWD maximum deflection and curvature

Deflection measurements are often used to monitor the deterioration of a pavement asset. Other than normal degradation of the pavement asset, deflection measurements can be affected by environmental factors such as temperature and moisture conditions. The repeatability of deflection measurements from multiple TSD runs is therefore an important aspect of this study. As shown in Figure 5.2 (maximum deflection and curvature), multiple TSD testing was conducted to confirm the repeatability of the measurements. For the Kwinana Freeway, the TSD operating speed was between 41 and 75 km/h whilst, at the Leach Highway, the operating speeds ranged between 48 and 65 km/h.

Although the results did not exactly match, it demonstrated that the TSD was very repeatable. When evaluating the results, it is important to recognise that, within the limit of the TSD driver, consecutive TSD runs may not be aligned perfectly along with the instrumentation array.

Future research should aim to improve the monitoring and guidance of the TSD to minimise wandering when passing an instrumentation array.





Figure 5.3 shows the Doppler laser in the leading side of the TSD rear axle.


Figure 5.3: Photograph of Doppler laser in front of the rear dual-tyre axle

To illustrate the variability of the TSD traffic paths, laser images obtained from the onboard Automatic Crack Detection (ACD) were analysed. The ACD images collected in subsequent TSD runs along the Kwinana Freeway and the Leach Highway are shown in Figure 5.4 and Figure 5.5, respectively. Red lines in the figures denote the approximate lateral position of the Doppler laser. Based on the ACD images and field observations, the TSD driver had more difficulty lining up the Doppler laser with the instrumentation array on the Kwinana Freeway than the Leach Highway. A possible reason for this could be that the TSD was traveling at a higher along the Kwinana Freeway and the site is located in a rural area where there were no kerbs and limited road furniture to help guide the driver. Nevertheless, the fifth run (K5) on the Kwinana Freeway was very close to the instrumentation array, whilst the eighth run (L8) was the closest on the Leach Highway. The project team believed that the lateral variability explained the variability in deflection of subsequent TSD runs. In the future, ACD images should be used to determine the location of the Doppler laser in relation to the instrumentation array.



Figure 5.4: ACD images from subsequent TSD runs along Kwinana Freeway



Figure 5.5: ACD images from subsequent TSD runs along Leach Highway

### 5.2 Typical Time Histories Collected from the Instrumentation Array

As discussed in Section 3.5, a high-precision data acquisition system was used in this project. During all the FWD testing and TSD pass-by runs, each geophone and accelerometer channel was sampling at a rate of more than 2 000 Hz. At this sampling rate, very detailed time-history data can be captured. An example of the velocity-time record captured by a geophone during a TSD pass-by is shown in Figure 5.6. The peaks in the time histories represent the pavement response induced by the first, second and third axle of the TSD as it travelled past the instrumentation array (left to right of the horizontal axis). The velocity record can be converted into the displacement record (refer Figure 5.7) through integration with respect to time. Furthermore, the acceleration record can be determined from the velocity record by differentiating with respect to time, as shown in Figure 5.8.

Figure 5.6: Typical velocity time history when TSD passes by instrumentation array



Figure 5.7: Typical displacement time history when TSD passes by instrumentation array





Figure 5.8: Typical acceleration time history when TSD passes by instrumentation array

Other than a TSD run, typical velocity and acceleration time records collected during an FWD test are also shown in Figure 5.9. It is worth noting that, for the same impulse load, the velocity time history has a lower frequency content than the acceleration history.





The instrumentation array captures the response from all three TSD axles. However, the deflection measured by the TSD only considers the loading from the last axle (single axle dual tyre). The velocity and acceleration time records from the TSD and the FWD are shown side-by-side in Figure 5.10. It is evident that the waveform from an FWD is different to a TSD from a time domain perspective. The TSD time record is a function of the travel speed of the device. Further analysis in the future can be carried out in the frequency domain to improve our understanding in this area.



#### Figure 5.10: Comparison of velocity and acceleration time records

It is worth further investigating the time history when the last TSD axle travels passed the instrumentation array, the deflection bowl shown in Figure 5.11 indicated an asymmetric rolling deflection bowl. It is characterized by rapid loading as the TSD approaches the instrumentation array, with the pavement rebounding slowly as the last axle leaves the instrumentation array.

Figure 5.11: Asymmetric rolling deflection bowl measured by the instrumentation array



Figure 5.12 shows the time histories as all three axles travelled past the instrumentation array on the Kwinana Freeway and Leach Highway. As expected, the displacement measured on the Leach Highway was higher than the displacement measured on the Kwinana Freeway. The last axle (far right axle) is heavier than the front and second axles. Therefore, the displacement measured is also of a similar pattern.

It is also important to note that the velocity and acceleration caused by the second axle (middle axle) return to zero before the last axle. This confirms that each axle is responding independently at both sites.



# Figure 5.12: Acceleration, velocity and displacement time histories of TSD passing the test array along Kwinana Freeway (left) and Leach Highway (right)

## 5.3 Comparison Between TSD and FWD Results

Based on the time records presented in the previous section, it is evident that a TSD pass-by is different from an FWD impulse load, with respect to the load duration, the shape of the waveform and the energy content in the frequency domain. To further complicate the issue, the response induced by the TSD is also dependent on the operating speed.

It is common practice to evaluate a relatively new device against an established testing device. In this case, one of the most commonly asked questions is how do the TSD measurements compare with the FWD measurements. Despite all the fundamental differences, at certain operating conditions, the net effects of these factors can cancel each other out.

A comparison of the maximum TSD and FWD deflections and curvatures at the two sites is shown in Figure 5.13 and Figure 5.14, respectively. For simplicity, only a single TSD run is shown for the Kwinana Freeway (left Figures) and Leach Highway (right of the Figures). The curvature function is of interest to MRWA because there is an emphasis of utilising this function for pavement acceptance purposes.



Figure 5.13: Comparison of maximum deflections on Kwinana Freeway (left) and Leach Highway (right)





These Figures only compare the maximum deflections and the curvature functions, which only applies to the front part of the deflection bowl. The full deflection bowls from both devices are shown in Figure 5.15; they confirm the remarkable match in the front part of the deflection bowl.



#### Figure 5.15: Comparison of selected deflection bowls collected from TSD and FWD

The deflection bowl for both the Kwinana Freeway and Leach Highway are compared in Figure 5.16 and Figure 5.17. It is worth noting that the tail end data (i.e. deflection beyond 900 mm offset) does not match well at the Kwinana Freeway site. Two recommendations for future study are suggested:

- Future research should focus on the linear viscoelastic behaviour of the Kwinana pavement with relatively thick asphalt layers.
- The study should include the subject of time-dependent asphalt layer properties subjected to the dynamic moving loads associated with the TSD. The effects of viscoelastic behaviour are expected to be more profound in the case of thick asphalt pavements.

The deflection measurements on the Leach Highway showed a much better match to at least 900 mm offset from the centre of the load. It is envisaged that a good TSD-FWD correlation can be developed from the deflection data collected at the Leach Highway.

Without further data, the project team cannot conclusively explain the difference in the field measurement at the Kwinana site. However, several explanations can be postulated here:

- The deflection bowl is very different at the two sites, and the Signal-to-Noise (SNR) ratio may be higher for stiff pavement at Site One (Kwinana Freeway).
- The degree of subgrade non-linearity (Chai et al. 2015) is often observed in FWD deflection (beyond 900 mm offset). It is postulated that the TSD measurement is also affected by the subgrade non-linearity behaviour. This was also reported for TSD data collected on Queensland pavements (Chai et al. 2016). At this stage, because of the different type of dynamic loading imposed by the two devices, the extent of this effect cannot be quantified at this point in time.

Lee & Conaghan (2016), in a study in Queensland, raised concerns as to whether linear regression is adequate to represent the relationship between TSD and FWD measurements in the tail end of the deflection bowl.

arrb



#### Figure 5.16: TSD deflection and FWD deflection comparison at different offsets along Kwinana Freeway



#### Figure 5.17: TSD deflection and FWD deflection comparison at different offsets along Leach Highway

## 5.4 Comparison of TSD and Ground Instrumentation

In the previous section, the TSD and FWD deflections were compared and showed reasonable agreement. While it is helpful to relate the TSD deflection with a traditional deflection testing device such as the FWD, the aim of this project is to set up an instrumentation array and demonstrate that in-ground sensors can validate the TSD or FWD measurement independently. In this section, the TSD data will be compared with the response measured by the instrumentation array.

Multiple TSD runs were carried out on 27 October 2018. The results of the TSD runs and the response measured by the instrumentation array along the Kwinana Freeway and Leach Highway are shown in Table 5.1. On the Kwinana Freeway, the TSD operated at 41–77 km/h, whilst on the Leach Highway, because of the limited post speed of 70 km/h, the TSD operated at 48–65 km/h.

| Site    | Run | Average<br>speed<br>(km/h) | Maximum<br>displacement<br>(microns) | Maximum<br>velocity<br>(mm/s) | Maximum<br>acceleration<br>(mm/s2) |
|---------|-----|----------------------------|--------------------------------------|-------------------------------|------------------------------------|
| Kwinana | 1   | 73                         | 207.91                               | 4.12                          | 0.38                               |
| Freeway | 2   | 77                         | 268.69                               | 9.99                          | 1.62                               |
|         | 3   | 76                         | 247.01                               | 8.90                          | 1.06                               |
|         | 4   | 76                         | 233.23                               | 7.02                          | 1.05                               |
|         | 5   | 76                         | 258.58                               | 9.74                          | 1.49                               |
|         | 6   | 41                         | 259.55                               | 5.48                          | 0.62                               |
|         | 7   | 48                         | 275.82                               | 6.93                          | 0.75                               |
| Leach   | 1   | 62                         | 535.22                               | 14.34                         | 1.63                               |
| Highway | 2   | 65                         | 686.32                               | 29.70                         | 5.85                               |
|         | 3   | 62                         | 821.40                               | 32.50                         | 4.25                               |
|         | 4   | 65                         | 847.20                               | 42.13                         | 9.21                               |
|         | 5   | 65                         | 772.57                               | 37.30                         | 8.97                               |
|         | 6   | 64                         | 829.03                               | 36.90                         | 6.07                               |
|         | 7   | 48                         | 876.00                               | 31.00                         | 5.30                               |
|         | 8   | 50                         | 907.42                               | 33.90                         | 4.81                               |

 Table 5.1: Measured instrumentation array response (geophone)

The deflection bowl measured by the TSD in each subsequent runs through the instrumentation site is presented in Figure 5.18 and Figure 5.19, for Kwinana Freeway and Leach Highway respectively. The deflection bowl measured by the instrumentation array using a geophone is also plotted for comparison.







#### Figure 5.19: Comparison of TSD runs and instrumentation response: Leach Highway

## 5.5 Comparison Between FWD and Ground Instrumentation

A similar comparison between the FWD and instrumentation measurements is shown in Figure 5.20 and Figure 5.21, for the Kwinana Freeway and Leach Highway respectively. All the FWD deflections measured by the instrumentation array are presented. The response measured by the geophone in Hole B and Hole D is also plotted. It is noted that, in order to construct the entire deflection bowl based on a point measurement, a different part of the time record from the instrumentation array was obtained as the dual-tyres of the wheel travelled through the array. The FWD and instrumentation array results from both sites compare well.



Figure 5.20: Comparison of FWD measurements and instrumentation array: Kwinana Freeway

Figure 5.21: Comparison of FWD measurements and instrumentation array: Leach Highway



### 5.5.1 Near Field Sensor Amplification

One of the phenomena mentioned earlier in this report (refer Section 4.2.2) is that, when the FWD loading plate is located directly over the instrumentation array, the instantaneous response measured by the instrumentation array is higher than the reported FWD deflection. As soon as the wheel departs the instrumentation array, the response from the FWD and the in-ground sensor agrees very well. This was not well understood by the project team at the time of the sensor installation. In order to better understand the reasons behind this, in October 2018, additional FWD testing was undertaken. Three series of tests, as denoted in Figure 5.22, with different lateral positions, were conducted.

The results collected by the geophones are shown in Figure 5.23, and the results collected by the accelerometers are shown in Figure 5.24. For the geophones, the measurements are slightly different at positions 1 and 2 (i.e. the FWD loading plate is either fully or partially covering the hole).

For the accelerometers, when the loading plate was at positions 1 and 2, the response was amplified significantly at the corresponding holes (i.e. when impacting at Hole B, the response in Hole B was higher than expected). At position 3, the FWD loading plate was not pressing against the hole, and the response reported by the instrumentation array was as expected.

In summary, the geophone was more immune to amplification compared to the accelerometer. This is primarily because the accelerometer does not have a casing to protect it against any compression from the wheel load. Furthermore, the accelerometer was generally embedded much closer to the pavement surface compared the geophone. Improvement to the installation details would therefore need to be addressed in future installations.





Figure 5.23: Comparison of displacement measured by geophones in the array when FWD impacted at different lateral positions







# 6 DEFLECTION BOWL COMPARISON AND CORRELATION STUDY

In a previous National Assets Centre of Excellence (NACoE) study in Queensland study (Lee & Conaghan 2016), several conversion curves were produced to relate the deflections measured with a FWD to the deflections measured under a TSD (Figure 6.1). The study was based on deflection data collected at nine different sites with a range of different pavement compositions.





The testing in October 2018 was conducted on a full-depth asphalt pavement and an asphalt pavement over the granular base. The TSD and FWD data collected at both sites is plotted in Figure 6.2, together with the correlation developed in the previous study. It can be seen that the TSD and FWD maximum deflection is closer to the line of unity.

Since MRWA is placing a strong emphasis on the FWD curvature data, the curvature (D0–D200) data collected from the TSD was compared with the FWD data, and the results are shown in Figure 6.3. It can be seen that there is an excellent correlation between the two devices.

The observations made in this study are based on limited data collected in October 2018. Further work is recommended to ensure that any variability during testing, and any seasonal and environmental influence, are properly taken into account.



Figure 6.2: Correlation between TSD and FWD maximum deflection





# 7 CONCLUSIONS AND RECOMMENDATIONS

The main aim of the project – which was funded by MRWA under its WARRIP program – was to acquire a better understanding of TSD deflection data by installing ground instrumentation (i.e. sensor arrays using geophones and accelerometers) and comparing the 'true' surface response when heavy vehicle traffic or other deflection testing devices travel over the pavement. Two deflection validation sites were established where the ground response of different deflection equipment was measured using the embedded instrumentation arrays. This was the first attempt in Australia to validate the deflection measurements made by a Traffic Speed Deflectometer (or commonly known as iPAVE).

The main findings of the project were as follows.

- The deflection profile varies with pavement type.
- For the Kwinana Freeway, there was a good match between the deflection data collected using the TSD and FWD in the front end of the deflection bowl (0 to 600 mm). For the Leach Highway, the deflection in the front end of the deflection bowl collected using the TSD and FWD also has a good match between 0 to 900mm offset. Without further testing, a conclusive explanation of the difference in the field measurements cannot be made. However, several explanations can be postulated, including:
  - The shape of the deflection bowl was very different at the two sites, and the Signal-to-Noise (SNR) ratio may have been higher for the stiffer pavement at Site One (Kwinana Freeway).
  - The degree of subgrade non-linearity (Chai et al. 2015) is often observed in FWD deflection (beyond 900 mm offset). It is postulated that the TSD measurement is also affected by the subgrade non-linearity behaviour. This was also reported for TSD data collected on Queensland pavements (Chai et al. 2016). At this stage, because of the different type of dynamic loading imposed by the two devices, the extent of this effect cannot be quantified at this point in time.
- To date, TSD data has been collected at 41–77 km/h in Kwinana Freeway, whilst on the Leach Highway, because of the limited post speed of 70 km/h, the TSD operated at 48– 65 km/h. The results do not support the fact that the pavement response is significantly affected by the speed of testing. Additional tests are needed to confirm this statement.
- In summary, the geophone is more immune to amplification than the accelerometer. This is
  primarily because the accelerometer does not have a casing to protect it against any
  compression from the wheel load. Furthermore, the accelerometer is generally installed
  much closer to the pavement surface than the geophone.
- A system needs to be developed to assist the driver of the TSD to travel as close as possible to the instrumentation array and to minimise wander.
- The predominant frequency of both the FWD and TSD (at 77 km/h) is between 20 and 30 Hz. When the TSD travelled at a lower speed (48 km/h), a lower predominant frequency of 10 to 20 Hz was recorded. It is important that the predominant frequencies are not filtered during the subsequent signal processing.

### 7.1 Future Work

Even though the main objectives of this project have been met, there are a few activities that can be considered for future research work:

 Take more measurements using the instrumentation array when the TSD travels past the sites in the future.

- The deflection profile differed according to pavement type. It is recommended that additional instrumentation sites be established in other pavement types. For example, granular base with thin bituminous surfacing, and asphalt over granular subbase.
- The experimental method developed in this project can be used to monitor the movement in the pavement materials. It can be used to track the response under a range of vehicular loadings.
- Develop and improve the design of the accelerometer housing case.
- In order to automate the data collection process, a cabinet should be designed to provide all-weather storage of the data acquisition system in the field, including a live data upload link to the internet for long-term storage.
- Develop an improved travel path tracking system to determine any lateral offset between the TSD Doppler laser array and the in-ground sensor. Testing during the day would help.
- The curvature function is of interest to MRWA because there is an emphasis on utilising this function for pavement acceptance purposes. Only limited data was collected in this project, and it is recommended that further studies be conducted.

# REFERENCES

- Austroads 2014, *Traffic speed deflectometer: data review and lessons learnt*, AP-T279-14, Austroads, Sydney, NSW.
- Chai, G, Kelly, G, Huang, A, Chowdhury, SH, Manoharan, S & Golding, A 2015, 'New approaches for modelling non-linearity of subgrade in asphalt pavements', *Transportation Research Board annual meeting*, 94th, 2015, Washington, DC, USA, TRB, Washington, DC, USA, 13 pp.
- Chai, G, Manoharan, S, Golding, A, Kelly, G & Chowdhury, SH 2016, 'Evaluation of the traffic speed deflectometer data using simplified deflection model', *Transport Research Procedia*, vol. 14, Elsevier, Amsterdam, Netherlands, pp. 3031–9.
- Lee, J & Conaghan, A 2016, P40 benefits of traffic speed deflectometer data in pavement analysis (TSD and FWD correlation study and investigation to 'ground truth' instrumentation) (year 2: 2015/2016), contract report 010554, National Asset Centre of Excellence, Brisbane, Qld.
- Muller, WB & Roberts, J 2013, 'Revised approach to assessing traffic speed deflectometer data and field validation of deflection bowl predictions', *International Journal of Pavement Engineering*, vol. 14, no. 4, pp. 388–402.
- Nasimifar, M, Thyagarajan, S, Siddharthan, RV & Sivaneswaran, N 2016, 'Robust deflection indices from traffic-speed deflectometer measurement to predict critical pavement responses for network-level pavement management system application', *Journal of Transportation Engineering*, vol. 142, no. 3, 11 pp.
- Nazarian, S & Bush, A 1989, 'Determination of deflection of pavement systems using velocity transducers', *Transportation Research Record*, no. 1227, pp. 147–58.
- Pedersen, L 2013, 'Viscoelastic modelling of road deflections for use with the traffic speed deflectometer', PhD thesis, Technical University of Denmark, Lyngby, Denmark.
- Rasmussen, S, Aagaard, L, Baltzer, S & Krarup, J 2008, 'A comparison of two years of network level measurements with the Traffic Speed Deflectometer', *Transport Research Arena Europe*, *2008*, *Ljubljana, Slovenia*, TRA, Ljubljana, Slovenia, 8 pp.
- Zofka, A, Sudyka, J, Maliszewski, M, Harasim, P & Sybilski, D 2014, 'Alternative approach for interpreting traffic speed deflectometer results', *Transportation Research Record*, no. 2457, pp. 12–8.

# APPENDIX A FWD TEST RESULT SUMMARY – KWINANA FREEWAY

| Station | Surface | Air      | Time                                 | Latitude                   | Longitude                | Height         | Stress | ND0              | ND200            | ND300  | ND400            | ND500            | ND600           | ND750          | ND900          | ND1500         |
|---------|---------|----------|--------------------------------------|----------------------------|--------------------------|----------------|--------|------------------|------------------|--------|------------------|------------------|-----------------|----------------|----------------|----------------|
| 0.05    | 10.2    | 13       | 12/09/2018 20:28                     | -32.4535183                | 115.799295               | 3.535          | 700.00 | 170.84           | 145.63           | 130.70 | 119.93           | 110.26           | 99.13           | 87.01          | 77.22          | 45.65          |
| 0.05    | 10.2    | 13       | 12/09/2018 20:28                     | -32.4535183                | 115.799295               | 3.535          | 700.00 | 168.13           | 144.25           | 129.63 | 119.50           | 109.13           | 98.88           | 87.38          | 76.75          | 46.13          |
| 0.05    | 10.2    | 13       | 12/09/2018 20:28                     | -32.4535183                | 115.799295               | 3.535          | 700.00 | 171.29           | 143.81           | 129.03 | 119.27           | 109.27           | 99.48           | 88.05          | 77.52          | 47.13          |
| 0.05    | 10.2    | 13       | 12/09/2018 20:28                     | -32.4535183                | 115.799295               | 3.535          | 700.00 | 167.98           | 144.81           | 128.57 | 119.24           | 108.61           | 99.89           | 87.45          | 78.72          | 47.44          |
| 0       | 10.4    | 13       | 12/09/2018 20:37                     | -32.4531866                | 115.799657               | 3.311          | 700.00 | 167.88           | 140.00           | 124.90 | 115.53           | 104.70           | 94.59           | 81.08          | 71.22          | 42.97          |
| 0       | 10.4    | 13       | 12/09/2018 20:37                     | -32.4531866                | 115.799657               | 3.311          | 700.00 | 165.57           | 139.50           | 123.74 | 114.56           | 104.88           | 93.71           | 80.55          | 71.49          | 41.21          |
| 0       | 10.4    | 13       | 12/09/2018 20:37                     | -32.4531866                | 115.799657               | 3.311          | 700.00 | 167.16           | 139.40           | 123.55 | 115.34           | 104.55           | 94.76           | 82.88          | 72.90          | 45.53          |
| 0       | 10.4    | 13       | 12/09/2018 20:37                     | -32.4531866                | 115.799657               | 3.311          | 700.00 | 168.85           | 140.20           | 124.83 | 115.31           | 104.01           | 94.99           | 83.48          | 73.17          | 44.92          |
| 0.005   | 10.6    | 13       | 12/09/2018 20:38                     | -32.4532162                | 115.799624               | 3.23           | 700.00 | 189.69           | 155.17           | 135.84 | 123.11           | 110.14           | 98.76           | 85.54          | 73.55          | 42.59          |
| 0.005   | 10.6    | 13       | 12/09/2018 20:38                     | -32.4532162                | 115.799624               | 3.23           | 700.00 | 190.25           | 155.00           | 134.88 | 122.00           | 111.13           | 99.38           | 86.50          | 74.13          | 45.88          |
| 0.005   | 10.6    | 13       | 12/09/2018 20:38                     | -32.4532162                | 115.799624               | 3.23           | 700.00 | 185.67           | 153.03           | 132.30 | 120.02           | 110 01           | 96.93           | 85.64          | 73.01          | 46.54          |
| 0.005   | 10.6    | 13       | 12/09/2018 20:38                     | -32.4532162                | 115.799624               | 3.23           | 700.00 | 186.37           | 151.57           | 131.13 | 118.26           | 109.99           | 96.92           | 85.66          | 70.50          | 50.06          |
| 0.01    | 10.9    | 13       | 12/09/2018 20:39                     | -32.4532512                | 115.799587               | 3.264          | 700.00 | 185.84           | 152.21           | 133.15 | 121.94           | 111.60           | 100.77          | 87.31          | 75.48          | 44.47          |
| 0.01    | 10.9    | 13       | 12/09/2018 20:39                     | -32.4532512                | 115.799587               | 3.264          | 700.00 | 183.63           | 153.63           | 127.00 | 120.25           | 112.00           | 99.63           | 83.63          | 70.25          | 46.50          |
| 0.01    | 10.9    | 13       | 12/09/2018 20:39                     | -32.4532512                | 115.799587               | 3.264          | 700.00 | 183.41           | 152.61           | 128.75 | 120.71           | 112.05           | 100.05          | 84.84          | 73.45          | 44.89          |
| 0.01    | 10.9    | 13       | 12/09/2018 20:39                     | -32.4532512                | 115.799587               | 3.264          | 700.00 | 180.83           | 149.06           | 132.63 | 121.38           | 110.83           | 100.67          | 87.62          | 76.77          | 46.30          |
| 0.015   | 10.8    | 14       | 12/09/2018 20:40                     | -32.4532867                | 115.799547               | 3.237          | 700.00 | 153.04           | 131.27           | 120.44 | 111.09           | 104.45           | 94.11           | 82.43          | 74.80          | 43.55          |
| 0.015   | 10.8    | 14       | 12/09/2018 20:40                     | -32.4532867                | 115.799547               | 3.237          | 700.00 | 153.34           | 131.19           | 120.42 | 110.63           | 104.02           | 94.23           | 81.99          | 75.51          | 43.32          |
| 0.015   | 10.8    | 14       | 12/09/2018 20:40                     | -32.4532867                | 115.799547               | 3.237          | 700.00 | 150.55           | 130.44           | 119.65 | 109.84           | 103.63           | 93.46           | 81.91          | 75.34          | 43.69          |
| 0.015   | 10.8    | 14       | 12/09/2018 20:40                     | -32.4532867                | 115.799547               | 3.237          | 700.00 | 152.10           | 132.03           | 120.73 | 112.87           | 104.25           | 95.24           | 84.22          | 76.21          | 45.77          |
| 0.02    | 10.6    | 14       | 12/09/2018 20:41                     | -32.4533175                | 115.799515               | 2.832          | 700.00 | 151.79           | 134.96           | 121.21 | 114.46           | 104.26           | 93.33           | 85.23          | 75.16          | 45.56          |
| 0.02    | 10.6    | 14       | 12/09/2018 20:41                     | -32.4533175                | 115.799515               | 2.832          | 700.00 | 148.22           | 133.27           | 120.94 | 113.22           | 104.13           | 94.29           | 84.95          | 74.61          | 45.46          |
| 0.02    | 10.6    | 14       | 12/09/2018 20:41                     | -32.4533175                | 115.799515               | 2.832          | 700.00 | 149.50           | 134.28           | 119.43 | 114.07           | 104.33           | 92.77           | 84.73          | 74.99          | 43.46          |
| 0.02    | 10.6    | 14       | 12/09/2018 20:41                     | -32.4533175                | 115.799515               | 2.832          | 700.00 | 151.43           | 134.08           | 121.15 | 114.23           | 104.80           | 94.47           | 85.64          | 76.72          | 46.73          |
| 0.025   | 10.1    | 14       | 12/09/2018 20:42                     | -32.4533548                | 115.799475               | 2.731          | 700.00 | 155.46           | 133.69           | 121.08 | 111.80           | 102.03           | 92.88           | 82.49          | 73.59          | 44.40          |
| 0.025   | 10.1    | 14       | 12/09/2018 20:42                     | -32.4533548                | 115.799475               | 2.731          | 700.00 | 155.04           | 132.17           | 119.98 | 111.03           | 102.45           | 92.13           | 82.31          | 73.36          | 44.64          |
| 0.025   | 10.1    | 14       | 12/09/2018 20:42                     | -32.4533548                | 115.799475               | 2.731          | 700.00 | 156.02           | 131.99           | 120.40 | 110.30           | 102.17           | 92.43           | 82.45          | 73.70          | 45.11          |
| 0.025   | 10.1    | 14       | 12/09/2018 20:42                     | -32.4533548                | 115.799475               | 2.731          | 700.00 | 151.72           | 132.63           | 119.49 | 110.91           | 105.05           | 92.63           | 82.12          | 74.95          | 49.60          |
| 0.025   | 10.1    | 13       | 12/09/2018 20:42                     | -32.4533827                | 115.799445               | 2.731          | 700.00 | 161.72           | 134.04           | 119.89 | 110.21           | 101.15           | 90.98           | 80.92          | 70.25          | 43.81          |
| 0.03    | 10.1    | 13       | 12/09/2018 20:42                     | -32.4533827                | 115.799445               | 2.89           | 700.00 | 158.59           | 133.51           | 120.29 | 109.93           | 99.45            | 91.84           | 79.86          | 72.62          | 43.92          |
| 0.03    | 10.1    | 13       | 12/09/2018 20:42                     | -32.4533827                | 115.799445               | 2.89           | 700.00 | 160.18           | 133.60           | 120.07 | 110.23           | 99.53            | 91.04           | 80.21          | 70.98          | 43.18          |
| 0.03    | 10.1    | 13       | 12/09/2018 20:42                     | -32.4533827                | 115.799445               | 2.89           | 700.00 | 163.30           | 135.16           | 121.74 | 111.66           | 101.37           | 92.80           | 82.31          | 73.73          | 45.09          |
| 0.03    | 10.1    | 13       | 12/09/2018 20:42                     | -32.4533827                | 115 700/02               | 2.89           | 700.00 | 168 20           | 130.15           | 123.02 | 111.07           | 100.11           | 94.39           | 81.85          | 75.02          | 46.90<br>45.02 |
| 0.035   | 10.1    | 13       | 12/09/2018 20:43                     | -32.4534219                | 115.799403               | 3.048          | 700.00 | 168.37           | 138.39           | 124.39 | 114.60           | 104.88           | 95.65           | 84.87          | 74.21          | 45.72          |
| 0.035   | 10.1    | 13       | 12/09/2018 20:43                     | -32.4534219                | 115.799403               | 3.048          | 700.00 | 167.75           | 138.40           | 124.04 | 115.44           | 103.16           | 95.79           | 85.23          | 74.91          | 46.30          |
| 0.035   | 10.1    | 13       | 12/09/2018 20:43                     | -32.4534219                | 115.799403               | 3.048          | 700.00 | 166.93           | 140.30           | 125.88 | 116.80           | 104.70           | 97.44           | 87.05          | 76.46          | 50.03          |
| 0.035   | 10.1    | 13       | 12/09/2018 20:43                     | -32.4534219                | 115.799403               | 3.048          | 700.00 | 165.33           | 139.10           | 124.34 | 116.97           | 102.21           | 97.22           | 87.25          | 77.18          | 52.65          |
| 0.04    | 10.9    | 13       | 12/09/2018 20:45                     | -32.4534521                | 115.799371               | 2.975          | 700.00 | 169 70           | 144.96           | 127.96 | 118.03           | 105.99           | 97.30           | 88.49          | 75.96          | 46.05          |
| 0.04    | 10.9    | 13       | 12/09/2018 20:45                     | -32.4534521                | 115.799371               | 2.975          | 700.00 | 169.40           | 141.74           | 127.54 | 117.58           | 106.87           | 96.90           | 88.81          | 75.98          | 45.46          |
| 0.04    | 10.9    | 13       | 12/09/2018 20:45                     | -32.4534521                | 115.799371               | 2.975          | 700.00 | 170.98           | 141.49           | 128.18 | 118.16           | 107.53           | 98.10           | 89.66          | 77.05          | 50.24          |
| 0.04    | 10.9    | 13       | 12/09/2018 20:45                     | -32.4534521                | 115.799371               | 2.975          | 700.00 | 170.30           | 143.54           | 128.69 | 118.59           | 107.88           | 98.08           | 88.38          | 77.17          | 48.08          |
| 0.045   | 10.1    | 13       | 12/09/2018 20:46                     | -32.4534853                | 115.799335               | 2.893          | 700.00 | 165.12           | 138.76           | 125.45 | 117.37           | 106.18           | 97.10           | 86.66          | 80.20          | 44.51          |
| 0.045   | 10.1    | 13       | 12/09/2018 20:46                     | -32.4534853                | 115.799335               | 2.893          | 700.00 | 161.79           | 139.38           | 125.47 | 117.46           | 106.82           | 97.30           | 86.91          | 80.64          | 44.47          |
| 0.045   | 10.1    | 13       | 12/09/2018 20:46                     | -32.4534853                | 115.799335               | 2.893          | 700.00 | 162.93           | 137.46           | 125.39 | 117.78           | 106.72           | 96.99           | 87.65          | 82.68          | 47.28          |
| 0.045   | 10.1    | 13       | 12/09/2018 20:46                     | -32.4534853                | 115.799335               | 2.893          | 700.00 | 164.58           | 137.37           | 124.93 | 117.14           | 106.21           | 97.01           | 87.40          | 82.34          | 47.54          |
| 0.05    | 10      | 13       | 12/09/2018 20:46                     | -32.45352                  | 115.799296               | 2.983          | 700.00 | 172.68           | 147.16           | 132.96 | 122.28           | 111.10           | 100.66          | 90.23          | 77.67          | 46.25          |
| 0.05    | 10      | 13       | 12/09/2018 20:46                     | -32.45352                  | 115.799296               | 2.983          | 700.00 | 170.88           | 146.52           | 130.90 | 121.05           | 10.47            | 99.40           | 88.27          | 76.42          | 45.56          |
| 0.05    | 10      | 13       | 12/09/2018 20:46                     | -32.45352                  | 115.799296               | 2.983          | 700.00 | 177.41           | 150.26           | 132.46 | 122.20           | 112.64           | 101.98          | 91.52          | 79.76          | 48.28          |
| 0.05    | 10      | 13       | 12/09/2018 20:46                     | -32.45352                  | 115.799296               | 2.983          | 700.00 | 173.65           | 148.81           | 131.39 | 122.37           | 111.46           | 101.65          | 90.73          | 79.31          | 48.67          |
| 0.055   | 10.6    | 13       | 12/09/2018 20:48                     | -32.4535516                | 115.799261               | 3.229          | 700.00 | 176.67           | 147.81           | 132.81 | 122.78           | 111.26           | 100.23          | 88.09          | 77.93          | 46.09          |
| 0.055   | 10.6    | 13       | 12/09/2018 20:48                     | -32.4535516                | 115.799261               | 3.229          | 700.00 | 175.56           | 146.79           | 131.85 | 121.98           | 110.74           | 99.75           | 88.27          | 78.15          | 45.31          |
| 0.055   | 10.6    | 13       | 12/09/2018 20:48                     | -32.4535516                | 115.799261               | 3.229          | 700.00 | 173.70           | 147.70           | 133.50 | 123.90           | 113.20           | 100.90          | 90.00          | 80.10          | 47.60          |
| 0.055   | 10.6    | 13       | 12/09/2018 20:48                     | -32.4535516                | 115.799261               | 3.229          | 700.00 | 172.54           | 147.23           | 134.28 | 124.63           | 113.79           | 99.63           | 89.38          | 79.84          | 51.12          |
| 0.06    | 9.9     | 13       | 12/09/2018 20:49                     | -32.453586                 | 115.799226               | 3.189          | 700.00 | 179.15           | 148.81           | 132.95 | 122.25           | 111.04           | 100.22          | 87.25          | 76.04          | 44.06          |
| 0.06    | 9.9     | 13       | 12/09/2018 20:49                     | -32.453586                 | 115.799226               | 3.189          | 700.00 | 180.49           | 148.29           | 133.05 | 121.95           | 110.85           | 100.12          | 87.80          | 76.95          | 48.41          |
| 0.06    | 9.9     | 13       | 12/09/2018 20:49                     | -32.453586                 | 115.799226               | 3.189          | 700.00 | 181.14           | 147.64           | 133.16 | 122.50           | 113.95           | 101.38          | 88.20          | 77.44          | 59.94          |
| 0.06    | 9.9     | 13       | 12/09/2018 20:49                     | -32.453586                 | 115.799226               | 3.189          | 700.00 | 181.18           | 145.02           | 132.57 | 119.01           | 110.37           | 101.43          | 87.47          | 77.83          | 63.97          |
| 0.065   | 9.9     | 13       | 12/09/2018 20:50                     | -32.4536201                | 115.799188               | 3.468          | 700.00 | 179.47           | 153.61           | 137.18 | 125.66           | 113.40           | 102.61          | 90.47          | 80.67          | 47.08          |
| 0.065   | 9.9     | 13       | 12/09/2018 20:50                     | -32.4536201                | 115.799188               | 3.468          | 700.00 | 176.95           | 151.31           | 135.35 | 124.29           | 111.85           | 101.29          | 89.10          | 80.56          | 45.87          |
| 0.065   | 9.9     | 13       | 12/09/2018 20:50                     | -32.4536201                | 115.799188               | 3.468          | 700.00 | 176.36           | 152.12           | 136.57 | 124.85           | 113.54           | 104.04          | 91.21          | 80.51          | 48.99          |
| 0.065   | 9.9     | 13       | 12/09/2018 20:50                     | -32.4536201                | 115.799188               | 3.468          | 700.00 | 177.55           | 152.88           | 137.50 | 125.82           | 114.94           | 105.65          | 92.67          | 82.38          | 50.83          |
| 0.07    | 9.9     | 13       | 12/09/2018 20:51                     | -32.453652                 | 115.799153               | 3.455          | 700.00 | 162.38           | 139.50           | 125.95 | 116.87           | 107.55           | 97.73           | 86.54          | 77.09          | 46.63          |
| 0.07    | 9.9     | 13       | 12/09/2018 20:51                     | -32.453652                 | 115.799153               | 3.455          | 700.00 | 160.78           | 140.12           | 127.39 | 117.49           | 109.08           | 98.94           | 88.18          | 78.29          | 48.36          |
| 0.07    | 9.9     | 13       | 12/09/2018 20:51                     | -32.453652                 | 115.799153               | 3.455          | 700.00 | 162.59           | 139.40           | 127.14 | 117.86           | 108.19           | 99.42           | 87.75          | 78.48          | 48.56          |
| 0.07    | 9.9     | 13       | 12/09/2018 20:51                     | -32.453652                 | 115.799153               | 3.455          | 700.00 | 159.20           | 138.70           | 126.60 | 117.20           | 107.90           | 98.80           | 87.80          | 78.60          | 48.80          |
| 0.075   | 9.9     | 13       | 12/09/2018 20:52                     | -32.4536864                | 115.799116               | 3.404          | 700.00 | 169.82           | 144.07           | 129.52 | 120.16           | 109.31           | 100.07          | 88.61          | 78.38          | 47.57          |
| 0.075   | 9.9     | 13       | 12/09/2018 20:52                     | -32.4536864                | 115.799116               | 3.404          | 700.00 | 1/0.58           | 143.81           | 129.44 | 120.23           | 109.05           | 100.70          | 88.54          | /8.72<br>78.00 | 48.02          |
| 0.075   | 9.9     | 13       | 12/09/2018 20:52                     | -32.4536864                | 115.799116               | 3.404          | 700.00 | 168.00           | 143.73           | 130.13 | 120.46           | 110.69           | 101.53          | 90.04          | 79.97          | 49.25          |
| 0.075   | 9.9     | 13       | 12/09/2018 20:52                     | -32.4536864                | 115.799116               | 3.404          | 700.00 | 168.39           | 144.34           | 130.34 | 120.87           | 110.82           | 101.45          | 90.41          | 79.96          | 49.39          |
| 0.08    | 10      | 13       | 12/09/2018 20:53                     | -32.4537183                | 115.799082               | 3.602          | 700.00 | 170.66           | 147.20           | 131.93 | 121.26           | 111.70           | 101.28          | 89.49          | 79.18          | 47.78          |
| 0.08    | 10      | 13       | 12/09/2018 20:53                     | -32.4537183                | 115.799082               | 3.602          | 700.00 | 171.03           | 146.70           | 131.81 | 121.01           | 111.21           | 101.52          | 89.49          | 79.31          | 47.29          |
| 0.08    | 10      | 13       | 12/09/2018 20:53                     | -32.4537183                | 115.799082               | 3.602          | 700.00 | 175.25           | 148.59           | 134.14 | 123.74           | 113.33           | 103.54          | 92.02          | 79.58<br>81.97 | 47.77          |
| 0.08    | 10      | 13       | 12/09/2018 20:53                     | -32.4537183                | 115.799082               | 3.602          | 700.00 | 175.80           | 148.48           | 133.72 | 123.65           | 112.98           | 103.90          | 91.94          | 82.17          | 49.86          |
| 0.085   | 10.4    | 13       | 12/09/2018 20:54                     | -32.4537497                | 115.799049               | 3.441          | 700.00 | 167.06           | 143.10           | 129.57 | 118.53           | 109.59           | 99.79           | 87.87          | 78.19          | 46.79          |
| 0.085   | 10.4    | 13       | 12/09/2018 20:54                     | -32.4537497                | 115.799049               | 3.441          | 700.00 | 164.52           | 141.60           | 127.92 | 117.94           | 108.70           | 98.96           | 87.38          | 77.39          | 45.97          |
| 0.085   | 10.4    | 13       | 12/09/2018 20:54                     | -32.4537497<br>-32.4537497 | 115.799049               | 3.441<br>3.441 | 700.00 | 166.01           | 142.09           | 129.07 | 118.81           | 110.17           | 99.23<br>100.03 | 88.78          | 78.54          | 40.54          |
| 0.085   | 10.4    | 13       | 12/09/2018 20:54                     | -32.4537497                | 115.799049               | 3.441          | 700.00 | 166.07           | 142.41           | 128.87 | 119.54           | 109.21           | 100.49          | 88.75          | 79.53          | 48.44          |
| 0.091   | 10.3    | 13       | 12/09/2018 20:55                     | -32.4537911                | 115.799007               | 3.524          | 700.00 | 174.26           | 149.56           | 134.04 | 123.37           | 111.21           | 101.90          | 89.36          | 79.93          | 46.79          |
| 0.091   | 10.3    | 13       | 12/09/2018 20:55                     | -32.4537911                | 115.799007               | 3.524          | 700.00 | 174.50           | 149.43           | 134.79 | 123.62           | 111.58           | 101.65          | 89.24          | 80.55          | 46.29          |
| 0.091   | 10.3    | 13       | 12/09/2018 20:55                     | -32.4537911                | 115.799007               | 3.524          | 700.00 | 1/1.95           | 149.45           | 133.29 | 123.46           | 110.91           | 101.46          | 89.15          | 79.57          | 48.12          |
| 0.091   | 10.3    | 13       | 12/09/2018 20:55                     | -32.4537911                | 115.799007               | 3.524          | 700.00 | 171.33           | 149.84           | 134.98 | 125.04           | 113.29           | 103.24          | 91.09          | 82.35          | 49.51          |
| 0.095   | 10.3    | 13       | 12/09/2018 20:55                     | -32.4538212                | 115.798975               | 3.699          | 700.00 | 182.72           | 152.47           | 134.94 | 123.46           | 112.47           | 102.72          | 89.63          | 80.37          | 49.63          |
| 0.095   | 10.3    | 13       | 12/09/2018 20:55                     | -32.4538212                | 115.798975               | 3.699          | 700.00 | 182.12           | 151.77           | 135.04 | 122.78           | 112.74           | 102.34          | 88.09          | 80.78          | 49.56          |
| 0.095   | 10.3    | 13       | 12/09/2018 20:55                     | -32.4538212                | 115.798975               | 3.699          | 700.00 | 182.84           | 152.22           | 133.83 | 124.44           | 112.22           | 102.72          | 89.14          | 80.00          | 49.88          |
| 0.095   | 10.3    | 13       | 12/09/2018 20:55                     | -32.4538212                | 115.798975               | 3.699          | 700.00 | 181.66           | 152.23           | 135.23 | 123.69           | 114.64           | 104.85          | 89.89          | 82.23          | +9.93<br>50.71 |
| 0.1     | 10.3    | 13       | 12/09/2018 20:56                     | -32.453854                 | 115.798942               | 3.432          | 700.00 | 169.18           | 142.88           | 127.23 | 118.96           | 108.69           | 99.68           | 88.16          | 79.14          | 46.58          |
| 0.1     | 10.3    | 13       | 12/09/2018 20:56                     | -32.453854                 | 115.798942               | 3.432          | 700.00 | 167.53           | 143.18           | 127.40 | 119.44           | 107.69           | 99.74           | 88.11          | 79.79          | 46.50          |
| 0.1     | 10.3    | 13       | 12/09/2018 20:56                     | -32.453854                 | 115.798942               | 3.432          | 700.00 | 167.75           | 143.50           | 128.25 | 120.25           | 109.00           | 100.13          | 89.00          | 79.50          | 47.25          |
| 0.1     | 10.3    | 13<br>13 | 12/09/2018 20:56<br>12/09/2018 20:56 | -32.453854<br>-32.453854   | 115.798942<br>115.798942 | 3.432          | 700.00 | 168.69<br>167.26 | 143.43<br>143.32 | 129.29 | 120.91<br>120.89 | 110.00<br>109.73 | 101.21          | 89.49<br>89.11 | 80.00<br>79.96 | 48.28<br>48.38 |

arrb

| Station | Surface    | Air   | Time            | Latitude | Longitude | DropID   | Stress | ND0    | ND200            | ND300  | ND400  | ND500  | ND600  | ND750          | ND900 | ND1500         |
|---------|------------|-------|-----------------|----------|-----------|----------|--------|--------|------------------|--------|--------|--------|--------|----------------|-------|----------------|
| 0       | 8.3        | 14.4  | 14/09/2018 0:11 | -32.4532 | 115.7997  | 1        | 700.00 | 155.56 | 131.06           | 116.90 | 107.96 | 97.51  | 89.39  | 79.05          | 70.35 | 40.75          |
| 0       | 8.3        | 14.4  | 14/09/2018 0:11 | -32.4532 | 115.7997  | 2        | 700.00 | 153.17 | 128.29           | 115.98 | 105.73 | 95.61  | 88.90  | 78.29          | 68.05 | 43.17          |
| 0       | 8.3        | 14.4  | 14/09/2018 0:11 | -32.4532 | 115.7997  | 3        | 700.00 | 153.06 | 129.28           | 115.23 | 105.99 | 96.13  | 88.61  | 78.13          | 69.88 | 41.53          |
| 0       | 8.3<br>8 3 | 14.4  | 14/09/2018 0:11 | -32.4532 | 115.7997  | 4        | 700.00 | 153.44 | 129.37           | 115.43 | 110.72 | 90.08  | 88.95  | 79.63          | 73.21 | 39.71          |
| 0.005   | 8.4        | 14.4  | 14/09/2018 0:12 | -32.4532 | 115.7996  | 6        | 700.00 | 168.89 | 139.64           | 123.46 | 115.67 | 103.68 | 96.61  | 83.07          | 77.43 | 44.59          |
| 0.005   | 8.4        | 14.4  | 14/09/2018 0:12 | -32.4532 | 115.7996  | 7        | 700.00 | 168.42 | 138.40           | 123.64 | 114.90 | 104.69 | 96.08  | 84.15          | 75.17 | 45.27          |
| 0.005   | 8.4        | 14.4  | 14/09/2018 0:12 | -32.4532 | 115.7996  | 8        | 700.00 | 166.39 | 137.56           | 122.29 | 113.73 | 103.96 | 95.41  | 82.95          | 75.86 | 44.59          |
| 0.005   | 8.4        | 14.4  | 14/09/2018 0:12 | -32.4532 | 115.7996  | 9        | 700.00 | 167.39 | 138.99           | 124.17 | 114.94 | 105.30 | 96.48  | 84.30          | 77.20 | 46.16          |
| 0.005   | 8.4        | 14.4  | 14/09/2018 0:12 | -32.4532 | 115.7996  | 10       | 700.00 | 166.96 | 138.10           | 123.92 | 114.04 | 105.15 | 97.06  | 83.68          | 79.29 | 46.83          |
| 0.01    | 7.9        | 14.4  | 14/09/2018 0:13 | -32.4533 | 115.7996  | 11       | 700.00 | 178.02 | 145.92           | 129.34 | 119.75 | 107.66 | 98.54  | 86.58          | 75.57 | 44.89          |
| 0.01    | 7.9        | 14.4  | 14/09/2018 0:13 | -32.4533 | 115.7996  | 12       | 700.00 | 175.61 | 142.68           | 127.93 | 117.56 | 106.34 | 97.20  | 85.12          | 75.00 | 43.78          |
| 0.01    | 7.9        | 14.4  | 14/09/2018 0:13 | -32.4555 | 115.7996  | 13       | 700.00 | 174.44 | 142.74           | 127.19 | 117.25 | 108.51 | 97.55  | 87.95          | 76.92 | 44.01          |
| 0.01    | 7.9        | 14.4  | 14/09/2018 0:13 | -32.4533 | 115.7996  | 14       | 700.00 | 177.30 | 142.10           | 130.20 | 117.60 | 108.70 | 99.20  | 87.40          | 77.00 | 46.10          |
| 0.015   | 7.7        | 14.3  | 14/09/2018 0:14 | -32.4533 | 115.7995  | 16       | 700.00 | 150.85 | 129.86           | 118.53 | 109.83 | 99.10  | 93.25  | 80.14          | 74.29 | 45.55          |
| 0.015   | 7.7        | 14.3  | 14/09/2018 0:14 | -32.4533 | 115.7995  | 17       | 700.00 | 148.57 | 129.11           | 117.48 | 109.16 | 99.37  | 92.88  | 81.50          | 73.67 | 45.28          |
| 0.015   | 7.7        | 14.3  | 14/09/2018 0:14 | -32.4533 | 115.7995  | 18       | 700.00 | 148.05 | 128.41           | 116.95 | 109.39 | 100.37 | 92.56  | 81.59          | 73.29 | 45.00          |
| 0.015   | 7.7        | 14.3  | 14/09/2018 0:14 | -32.4533 | 115.7995  | 19       | 700.00 | 149.92 | 129.59           | 119.67 | 110.25 | 101.43 | 94.49  | 82.69          | 76.05 | 46.90          |
| 0.015   | 7.7        | 14.3  | 14/09/2018 0:14 | -32.4533 | 115.7995  | 20       | 700.00 | 150.04 | 129.66           | 118.61 | 109.27 | 99.93  | 93.70  | 81.35          | 75.22 | 46.40          |
| 0.02    | 7.8        | 14.4  | 14/09/2018 0:15 | -32.4533 | 115.7995  | 21       | 700.00 | 148 37 | 130.68           | 119.33 | 111.21 | 102.85 | 94.73  | 82.42          | 75.14 | 46.11          |
| 0.02    | 7.8        | 14.4  | 14/09/2018 0:15 | -32,4533 | 115.7995  | 22       | 700.00 | 148.24 | 129.03           | 118.35 | 110.11 | 101.37 | 93.50  | 82.43          | 74.45 | 46.87          |
| 0.02    | 7.8        | 14.4  | 14/09/2018 0:15 | -32.4533 | 115.7995  | 24       | 700.00 | 147.03 | 129.45           | 118.71 | 110.57 | 102.74 | 94.51  | 82.55          | 75.82 | 47.50          |
| 0.02    | 7.8        | 14.4  | 14/09/2018 0:15 | -32.4533 | 115.7995  | 25       | 700.00 | 145.71 | 130.39           | 119.47 | 111.66 | 102.85 | 94.84  | 84.12          | 75.51 | 46.57          |
| 0.025   | 7.7        | 14.3  | 14/09/2018 0:16 | -32.4534 | 115.7995  | 26       | 700.00 | 147.41 | 128.41           | 118.02 | 108.34 | 98.31  | 91.62  | 78.48          | 72.63 | 44.68          |
| 0.025   | 7.7        | 14.3  | 14/09/2018 0:16 | -32.4534 | 115.7995  | 27       | 700.00 | 145.35 | 127.57           | 115.75 | 106.31 | 97.10  | 91.39  | 79.57          | 72.61 | 45.51          |
| 0.025   | 7.7        | 14.3  | 14/09/2018 0:16 | -32.4534 | 115.7995  | 28       | 700.00 | 147.14 | 127.82           | 117.24 | 106.66 | 97.43  | 92.88  | 78.61          | 73.20 | 45.27          |
| 0.025   | 7.7        | 14.3  | 14/09/2018 0:16 | -32.4534 | 115.7995  | 29       | 700.00 | 147.43 | 128.95           | 117.80 | 109.07 | 99.73  | 93.40  | 81.45          | 74.32 | 46.40          |
| 0.025   | 7.7        | 14.3  | 14/09/2018 0:16 | -32.4534 | 115.7994  | 30       | 700.00 | 153.71 | 129.72           | 114 77 | 106.40 | 95.60  | 88.32  | 79.95          | 68.42 | 44.64          |
| 0.03    | 7.7        | 14.3  | 14/09/2018 0:17 | -32.4534 | 115.7994  | 32       | 700.00 | 152.59 | 127.90           | 114.44 | 105.93 | 95.93  | 87.41  | 79.51          | 67.53 | 43.83          |
| 0.03    | 7.7        | 14.3  | 14/09/2018 0:17 | -32.4534 | 115.7994  | 33       | 700.00 | 152.06 | 126.47           | 113.92 | 106.05 | 96.94  | 88.82  | 79.23          | 68.65 | 44.04          |
| 0.03    | 7.7        | 14.3  | 14/09/2018 0:17 | -32.4534 | 115.7994  | 34       | 700.00 | 153.86 | 128.55           | 115.70 | 107.36 | 98.42  | 89.99  | 81.05          | 70.60 | 46.10          |
| 0.03    | 7.7        | 14.3  | 14/09/2018 0:17 | -32.4534 | 115.7994  | 35       | 700.00 | 152.69 | 128.92           | 116.33 | 108.17 | 98.60  | 89.84  | 80.47          | 70.30 | 46.53          |
| 0.035   | 7.6        | 14.4  | 14/09/2018 0:18 | -32.4534 | 115.7994  | 36       | 700.00 | 164.14 | 135.78           | 121.78 | 113.21 | 103.79 | 95.34  | 83.76          | 74.10 | 45.98          |
| 0.035   | 7.6        | 14.4  | 14/09/2018 0:18 | -32.4534 | 115,7994  | 37       | 700.00 | 157.59 | 134.18           | 120.67 | 111.75 | 102.58 | 94.28  | 83.26          | 73.72 | 45.96          |
| 0.035   | 7.6        | 14.4  | 14/09/2018 0:18 | -32.4534 | 115.7994  | 39       | 700.00 | 160.52 | 134.51           | 123.61 | 113.45 | 102.77 | 96.25  | 84,89          | 74.20 | 47.87          |
| 0.035   | 7.6        | 14.4  | 14/09/2018 0:18 | -32.4534 | 115.7994  | 40       | 700.00 | 161.10 | 135.10           | 123.00 | 113.10 | 104.30 | 95.90  | 84.50          | 75.50 | 47.50          |
| 0.04    | 7.7        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7994  | 41       | 700.00 | 161.97 | 138.20           | 124.87 | 114.19 | 105.90 | 96.17  | 84.53          | 77.20 | 45.63          |
| 0.04    | 7.7        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7994  | 42       | 700.00 | 159.88 | 136.54           | 123.21 | 112.84 | 104.81 | 95.43  | 83.21          | 77.28 | 45.31          |
| 0.04    | 7.7        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7994  | 43       | 700.00 | 160.23 | 136.90           | 123.62 | 112.94 | 105.62 | 95.57  | 83.65          | 76.08 | 45.30          |
| 0.04    | 7.7        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7994  | 44       | 700.00 | 158.39 | 138.27           | 125.07 | 114.60 | 106.88 | 97.33  | 84.83          | 78.74 | 47.04          |
| 0.04    | 7.7        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7994  | 45       | 700.00 | 157.98 | 137.66           | 124.86 | 114.70 | 106.27 | 97.13  | 85.24          | 76.91 | 47.24          |
| 0.045   | 7.6        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7993  | 40       | 700.00 | 157.99 | 133.14           | 122.02 | 113.75 | 104.39 | 95.40  | 82.70          | 77.41 | 46.79          |
| 0.045   | 7.6        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7993  | 48       | 700.00 | 152.75 | 132.64           | 121.13 | 111.19 | 103.35 | 94.40  | 82.38          | 76.74 | 44.50          |
| 0.045   | 7.6        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7993  | 49       | 700.00 | 155.85 | 133.50           | 122.83 | 112.37 | 104.75 | 95.70  | 83.21          | 79.85 | 45.52          |
| 0.045   | 7.6        | 14.4  | 14/09/2018 0:19 | -32.4535 | 115.7993  | 50       | 700.00 | 157.30 | 131.55           | 121.90 | 110.23 | 104.09 | 95.34  | 82.87          | 81.57 | 46.16          |
| 0.05    | 7.2        | 14.4  | 14/09/2018 0:20 | -32.4535 | 115.7993  | 51       | 700.00 | 176.69 | 145.55           | 130.47 | 120.93 | 109.83 | 97.40  | 87.98          | 78.81 | 46.22          |
| 0.05    | 7.2        | 14.4  | 14/09/2018 0:20 | -32.4535 | 115.7993  | 52       | 700.00 | 166.86 | 143.98           | 129.56 | 119.24 | 109.29 | 96.86  | 87.28          | 78.58 | 45.88          |
| 0.05    | 7.2        | 14.4  | 14/09/2018 0:20 | -32.4535 | 115.7993  | 53       | 700.00 | 173.11 | 142.64           | 128.04 | 119.23 | 109.03 | 96.19  | 87.63          | 79.44 | 46.83          |
| 0.05    | 7.2        | 14.4  | 14/09/2018 0:20 | -32.4535 | 115.7993  | 55       | 700.00 | 174.30 | 144.63           | 130.15 | 121.45 | 110.23 | 99.77  | 89.81          | 80.96 | 49.08          |
| 0.055   | 7.7        | 14.4  | 14/09/2018 0:21 | -32.4536 | 115.7993  | 56       | 700.00 | 167.83 | 143.43           | 127.74 | 119.40 | 109.47 | 98.20  | 87.53          | 78.34 | 46.95          |
| 0.055   | 7.7        | 14.4  | 14/09/2018 0:21 | -32.4536 | 115.7993  | 57       | 700.00 | 166.88 | 141.86           | 126.25 | 116.96 | 108.16 | 96.64  | 86.48          | 78.30 | 45.72          |
| 0.055   | 7.7        | 14.4  | 14/09/2018 0:21 | -32.4536 | 115.7993  | 58       | 700.00 | 167.50 | 142.48           | 126.50 | 117.82 | 110.27 | 97.88  | 87.96          | 80.65 | 47.08          |
| 0.055   | 7.7        | 14.4  | 14/09/2018 0:21 | -32.4536 | 115.7993  | 59       | 700.00 | 167.76 | 143.98           | 126.53 | 117.86 | 115.92 | 99.18  | 91.53          | 85.61 | 50.51          |
| 0.06    | 7.7        | 14.4  | 14/09/2018 0:22 | -32.4536 | 115.7992  | 61       | 700.00 | 173.40 | 142.59           | 128.79 | 118.06 | 108.20 | 97.85  | 87.01          | 76.41 | 45.97          |
| 0.06    | 7.7        | 14.3  | 14/09/2018 0:22 | -32.4536 | 115.7992  | 62       | 700.00 | 173.53 | 141.96           | 127.88 | 117.12 | 107.69 | 97.41  | 86.40          | 76.24 | 45.77          |
| 0.06    | 7.7        | 14.3  | 14/09/2018 0:22 | -32.4536 | 115.7992  | 63       | 700.00 | 173.46 | 140.86           | 127.53 | 116.91 | 107.53 | 96.91  | 86.30          | 76.30 | 45.68          |
| 0.06    | 7.7        | 14.3  | 14/09/2018 0:22 | -32.4536 | 115.7992  | 64       | 700.00 | 172.19 | 142.15           | 128.55 | 118.34 | 108.12 | 99.12  | 87.07          | 77.66 | 47.42          |
| 0.06    | 7.7        | 14.3  | 14/09/2018 0:22 | -32.4536 | 115.7992  | 65       | 700.00 | 171.16 | 143.14           | 128.47 | 118.96 | 108.64 | 99.54  | 88.31          | 78.29 | 47.85          |
| 0.065   | 7.4        | 14.3  | 14/09/2018 0:23 | -32.4536 | 115.7992  | 66       | 700.00 | 176.46 | 148.17           | 132.68 | 123.78 | 111.22 | 99.63  | 90.98          | 76.46 | 46.83          |
| 0.065   | 7.4        | 14.3  | 14/09/2018 0:23 | -32.4536 | 115.7992  | 68       | 700.00 | 173.02 | 147.42           | 131.10 | 122.50 | 109 88 | 99.43  | 90.41          | 76.80 | 40.03          |
| 0.065   | 7.4        | 14.3  | 14/09/2018 0:23 | -32.4536 | 115.7992  | 69       | 700.00 | 176.34 | 147.92           | 133.56 | 123.17 | 112.38 | 102.87 | 91.29          | 80.40 | 48.51          |
| 0.065   | 7.4        | 14.3  | 14/09/2018 0:23 | -32.4536 | 115.7992  | 70       | 700.00 | 174.45 | 147.93           | 131.76 | 125.24 | 111.38 | 100.83 | 92.70          | 77.73 | 49.41          |
| 0.07    | 7.3        | 14.3  | 14/09/2018 0:24 | -32.4537 | 115.7992  | 71       | 700.00 | 155.77 | 136.97           | 123.74 | 115.13 | 105.18 | 96.45  | 87.71          | 78.98 | 47.07          |
| 0.07    | 7.3        | 14.3  | 14/09/2018 0:24 | -32.4537 | 115.7992  | 72       | 700.00 | 156.09 | 137.11           | 124.17 | 115.12 | 105.57 | 96.89  | 87.97          | 80.05 | 48.26          |
| 0.07    | 7.3        | 14.3  | 14/09/2018 0:24 | -32.4537 | 115.7992  | 73       | 700.00 | 155.46 | 134.64           | 122.47 | 112.61 | 105.55 | 95.69  | 85.58          | 75.84 | 46.50          |
| 0.07    | 7.3        | 14.3  | 14/09/2018 0:24 | -32.4537 | 115.7992  | 74       | 700.00 | 155.32 | 135.99           | 123.88 | 115.46 | 106.55 | 98.04  | 86.82          | 77.61 | 48.37          |
| 0.07    | 7.3        | 14.3  | 14/09/2018 0:24 | -32.453/ | 115 7001  | 75<br>76 | 700.00 | 160.02 | 140 96           | 126.61 | 118 02 | 107.03 | 97.90  | 80.94          | 77.91 | 48.39          |
| 0.075   | 7.4        | 14.3  | 14/09/2018 0:25 | -32.4537 | 115.7991  | 77       | 700.00 | 166.05 | 140.12           | 127.41 | 118.15 | 108.89 | 99.14  | 88.02          | 77.16 | 46.79          |
| 0.075   | 7.4        | 14.3  | 14/09/2018 0:25 | -32.4537 | 115.7991  | 78       | 700.00 | 159.20 | 138.88           | 126.74 | 116.71 | 108.16 | 98.62  | 86.85          | 76.44 | 46.71          |
| 0.075   | 7.4        | 14.3  | 14/09/2018 0:25 | -32.4537 | 115.7991  | 79       | 700.00 | 159.39 | 140.10           | 127.45 | 119.29 | 108.37 | 100.20 | 88.06          | 78.37 | 48.27          |
| 0.075   | 7.4        | 14.3  | 14/09/2018 0:25 | -32.4537 | 115.7991  | 80       | 700.00 | 162.53 | 140.50           | 127.48 | 119.37 | 109.06 | 100.34 | 88.73          | 79.21 | 48.87          |
| 0.08    | 7.5        | 14.3  | 14/09/2018 0:26 | -32.4537 | 115.7991  | 81       | 700.00 | 168.64 | 142.94           | 128.99 | 118.83 | 109.28 | 98.64  | 86.52          | 76.00 | 46.75          |
| 0.08    | 7.5        | 1/1 2 | 14/09/2018 0:26 | -32.453/ | 115 7001  | 82<br>دو | 700.00 | 165 22 | 142.33           | 127.35 | 117.75 | 109.91 | 90.05  | 85.0U          | 74.30 | 40.91<br>47 40 |
| 0.08    | 7.5        | 14.3  | 14/09/2018 0:26 | -32.4537 | 115.7991  | 84       | 700.00 | 170.12 | 142.82           | 120.34 | 119.76 | 110.79 | 99.51  | 88,53          | 78.56 | 48.65          |
| 0.08    | 7.5        | 14.3  | 14/09/2018 0:26 | -32.4537 | 115.7991  | 85       | 700.00 | 168.24 | 142.52           | 128.20 | 119.42 | 110.45 | 99.05  | 88.26          | 78.37 | 49.32          |
| 0.085   | 7.6        | 14.2  | 14/09/2018 0:27 | -32.4538 | 115.799   | 86       | 700.00 | 165.07 | 139.39           | 127.04 | 116.87 | 107.79 | 98.46  | 87.08          | 77.39 | 46.75          |
| 0.085   | 7.6        | 14.2  | 14/09/2018 0:27 | -32.4538 | 115.799   | 87       | 700.00 | 160.65 | 137.92           | 126.20 | 115.93 | 107.50 | 98.22  | 87.96          | 78.55 | 46.42          |
| 0.085   | 7.6        | 14.2  | 14/09/2018 0:27 | -32.4538 | 115.799   | 88       | 700.00 | 157.75 | 136.65           | 124.73 | 114.56 | 106.74 | 97.43  | 86.63          | 76.58 | 46.05          |
| 0.085   | 7.6        | 14.2  | 14/09/2018 0:27 | -32.4538 | 115.799   | 89       | 700.00 | 160.88 | 138.31           | 126.58 | 116.73 | 107.59 | 99.53  | 88.20          | 78.55 | 47.93          |
| 0.085   | 7.0        | 14.2  | 14/09/2018 0:2/ | -32.4538 | 115 700   | 90       | 700.00 | 169 70 | 130.48           | 130 62 | 119 70 | 110 17 | 100 69 | 87.80          | 70.12 | 47.88          |
| 0.09    | 7.4        | 14.1  | 14/09/2018 0:28 | -32.4538 | 115.799   | 92       | 700.00 | 166.54 | 144.07           | 128.89 | 120.25 | 109.63 | 99.26  | 87.28          | 78.15 | 47.04          |
| 0.09    | 7.4        | 14.1  | 14/09/2018 0:28 | -32.4538 | 115.799   | 93       | 700.00 | 170.92 | 143.96           | 129.86 | 120.09 | 108.71 | 100.18 | 88.80          | 78.29 | 46.63          |
| 0.09    | 7.4        | 14.1  | 14/09/2018 0:28 | -32.4538 | 115.799   | 94       | 700.00 | 167.24 | 144.32           | 129.93 | 121.09 | 111.22 | 100.84 | 88.81          | 79.97 | 48.21          |
| 0.09    | 7.4        | 14.1  | 14/09/2018 0:28 | -32.4538 | 115.799   | 95       | 700.00 | 167.82 | 145.09           | 130.13 | 122.45 | 111.78 | 101.01 | 88.45          | 80.67 | 48.36          |
| 0.095   | 7.3        | 14.1  | 14/09/2018 0:29 | -32.4538 | 115.799   | 96       | 700.00 | 177.13 | 148.52           | 132.94 | 123.32 | 111.39 | 102.38 | 92.16          | 79.74 | 50.89          |
| 0.095   | 7.3        | 14.1  | 14/09/2018 0:29 | -32.4538 | 115.799   | 97       | 700.00 | 172.05 | 145.18           | 127.18 | 119.54 | 108.00 | 100.07 | 89.60          | 75.04 | 48.68          |
| 0.095   | 7.3        | 14.1  | 14/09/2018 0:29 | -32.4538 | 115 700   | 98       | 700.00 | 175 56 | 145.08<br>147.15 | 129.22 | 122 12 | 100 06 | 100.11 | 89.08<br>97.19 | 77.81 | 48.44<br>50 59 |
| 0.095   | 7.3        | 14.1  | 14/09/2018 0:29 | -32.4538 | 115.799   | 100      | 700.00 | 174.85 | 147.67           | 131.14 | 123.17 | 111.12 | 103.36 | 92.50          | 80.16 | 50.18          |
| 0.1     | 7.3        | 14.1  | 14/09/2018 0:30 | -32.4539 | 115.7989  | 101      | 700.00 | 161.18 | 137.57           | 124.66 | 116.02 | 106.16 | 97.51  | 85.83          | 76.45 | 45.90          |
| 0.1     | 7.3        | 14.1  | 14/09/2018 0:30 | -32.4539 | 115.7989  | 102      | 700.00 | 159.18 | 137.68           | 124.73 | 115.93 | 105.92 | 97.24  | 86.49          | 76.60 | 45.93          |
| 0.1     | 7.3        | 14.1  | 14/09/2018 0:30 | -32.4539 | 115.7989  | 103      | 700.00 | 160.65 | 137.28           | 124.05 | 115.76 | 105.87 | 97.08  | 86.08          | 77.05 | 46.50          |
| 0.1     | 7.3        | 14.1  | 14/09/2018 0:30 | -32.4539 | 115.7989  | 104      | 700.00 | 163.66 | 139.80           | 127.17 | 118.52 | 108.98 | 100.13 | 88.79          | 79.05 | 48.52          |
| 0.1     | 7.3        | 14.1  | 14/09/2018 0:30 | -32.4539 | 115.7989  | 105      | 700.00 | 163.37 | 138.19           | 125.66 | 117.64 | 107.81 | 99.38  | 88.75          | 81.23 | 48.24          |



| Ρ | RP1 | 170          | 37- | 02  |
|---|-----|--------------|-----|-----|
| • |     | 1 <i>1</i> U | 37- | UZ. |

| Comment | Surface | Air | Time            | Latitude    | Longitude  | Height | DropID | Stress | ND0    | ND200  | ND300  | ND400  | ND500  | ND600  | ND750 | ND900 | ND1500 |
|---------|---------|-----|-----------------|-------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|
| В       | 8.6     | 14  | 14/09/2018 0:44 | -32.4535202 | 115.799299 | 3.319  | 1      | 700.00 | 181.48 | 145.42 | 130.93 | 119.97 | 108.89 | 98.16  | 83.91 | 75.19 | 45.61  |
| В       | 8.6     | 14  | 14/09/2018 0:44 | -32.4535202 | 115.799299 | 3.319  | 2      | 700.00 | 180.29 | 144.21 | 129.18 | 118.83 | 108.73 | 97.54  | 83.23 | 74.57 | 44.98  |
| В       | 8.6     | 14  | 14/09/2018 0:44 | -32.4535202 | 115.799299 | 3.319  | 3      | 700.00 | 177.27 | 144.03 | 129.93 | 119.76 | 109.48 | 98.50  | 86.22 | 76.35 | 46.73  |
| В       | 8.6     | 14  | 14/09/2018 0:44 | -32.4535202 | 115.799299 | 3.319  | 4      | 700.00 | 175.70 | 144.38 | 130.12 | 119.59 | 109.33 | 98.99  | 86.87 | 76.90 | 47.54  |
| В       | 8.6     | 14  | 14/09/2018 0:44 | -32.4535202 | 115.799299 | 3.319  | 5      | 700.00 | 176.81 | 142.64 | 126.81 | 116.39 | 106.67 | 95.28  | 80.97 | 72.78 | 42.92  |
| В       | 8.6     | 14  | 14/09/2018 0:44 | -32.4535202 | 115.799299 | 3.319  | 6      | 700.00 | 180.14 | 143.47 | 128.89 | 118.47 | 107.78 | 97.22  | 82.50 | 74.31 | 44.31  |
| С       | 8.8     | 14  | 14/09/2018 0:46 | -32.4535203 | 115.799297 | 3.498  | 7      | 700.00 | 177.06 | 145.24 | 129.77 | 119.16 | 108.18 | 97.70  | 85.35 | 75.12 | 49.29  |
| С       | 8.8     | 14  | 14/09/2018 0:46 | -32.4535203 | 115.799297 | 3.498  | 8      | 700.00 | 176.11 | 144.33 | 128.13 | 116.25 | 106.61 | 96.47  | 85.95 | 71.98 | 43.16  |
| С       | 8.8     | 14  | 14/09/2018 0:46 | -32.4535203 | 115.799297 | 3.498  | 9      | 700.00 | 176.50 | 144.59 | 129.63 | 119.26 | 107.89 | 98.52  | 87.35 | 74.59 | 45.77  |
| С       | 8.8     | 14  | 14/09/2018 0:46 | -32.4535203 | 115.799297 | 3.498  | 10     | 700.00 | 176.29 | 144.42 | 130.05 | 119.09 | 108.68 | 99.01  | 87.78 | 76.91 | 47.71  |
| D       | 9.1     | 14  | 14/09/2018 0:48 | -32.4535219 | 115.799296 | 3.182  | 11     | 700.00 | 182.93 | 144.67 | 130.04 | 118.72 | 106.05 | 96.82  | 86.36 | 74.80 | 42.81  |
| D       | 9.1     | 14  | 14/09/2018 0:48 | -32.4535219 | 115.799296 | 3.182  | 12     | 700.00 | 183.05 | 146.10 | 128.29 | 119.02 | 106.10 | 97.32  | 86.83 | 76.22 | 45.12  |
| D       | 9.1     | 14  | 14/09/2018 0:48 | -32.4535219 | 115.799296 | 3.182  | 13     | 700.00 | 181.70 | 145.44 | 130.13 | 120.06 | 107.47 | 98.00  | 87.63 | 76.95 | 46.13  |
| D       | 9.1     | 14  | 14/09/2018 0:48 | -32.4535219 | 115.799296 | 3.182  | 14     | 700.00 | 181.27 | 146.04 | 130.05 | 120.48 | 108.21 | 99.28  | 88.69 | 77.90 | 47.04  |
| E       | 9.2     | 14  | 14/09/2018 0:49 | -32.4535212 | 115.799297 | 3.438  | 15     | 700.00 | 179.29 | 147.21 | 130.18 | 118.49 | 106.68 | 97.35  | 86.91 | 76.96 | 44.14  |
| E       | 9.2     | 14  | 14/09/2018 0:49 | -32.4535212 | 115.799297 | 3.438  | 16     | 700.00 | 180.78 | 148.70 | 131.17 | 119.36 | 107.92 | 98.10  | 87.03 | 77.34 | 46.00  |
| E       | 9.2     | 14  | 14/09/2018 0:49 | -32.4535212 | 115.799297 | 3.438  | 17     | 700.00 | 180.00 | 147.88 | 131.41 | 119.60 | 108.08 | 100.40 | 89.39 | 79.49 | 45.66  |
| E       | 9.2     | 14  | 14/09/2018 0:49 | -32.4535212 | 115.799297 | 3.438  | 18     | 700.00 | 177.79 | 148.38 | 131.99 | 119.89 | 110.31 | 100.16 | 88.71 | 79.03 | 47.38  |
| F       | 9.1     | 14  | 14/09/2018 0:50 | -32.4535209 | 115.799297 | 3.815  | 19     | 700.00 | 180.84 | 146.52 | 130.90 | 119.95 | 108.01 | 97.07  | 84.76 | 75.17 | 49.33  |
| F       | 9.1     | 14  | 14/09/2018 0:50 | -32.4535209 | 115.799297 | 3.815  | 20     | 700.00 | 180.55 | 145.37 | 130.52 | 119.54 | 106.43 | 96.45  | 83.23 | 74.87 | 45.67  |
| F       | 9.1     | 14  | 14/09/2018 0:50 | -32.4535209 | 115.799297 | 3.815  | 21     | 700.00 | 180.79 | 146.66 | 131.70 | 120.83 | 108.43 | 97.88  | 85.78 | 76.76 | 47.96  |
| F       | 9.1     | 14  | 14/09/2018 0:50 | -32.4535209 | 115.799297 | 3.815  | 22     | 700.00 | 179.92 | 146.21 | 132.17 | 121.38 | 108.87 | 98.46  | 86.04 | 77.26 | 48.04  |
| G       | 9.1     | 14  | 14/09/2018 0:51 | -32.453522  | 115.799295 | 3.491  | 23     | 700.00 | 190.61 | 147.68 | 130.49 | 120.37 | 107.20 | 97.80  | 87.93 | 75.37 | 47.44  |
| G       | 9.1     | 14  | 14/09/2018 0:51 | -32.453522  | 115.799295 | 3.491  | 24     | 700.00 | 189.15 | 146.70 | 130.44 | 119.77 | 107.48 | 98.17  | 87.13 | 76.08 | 45.18  |
| G       | 9.1     | 14  | 14/09/2018 0:51 | -32.453522  | 115.799295 | 3.491  | 25     | 700.00 | 187.70 | 147.03 | 131.36 | 121.02 | 108.77 | 99.33  | 88.48 | 77.53 | 48.21  |
| G       | 9.1     | 14  | 14/09/2018 0:51 | -32.453522  | 115.799295 | 3.491  | 26     | 700.00 | 186.42 | 146.82 | 132.45 | 121.21 | 109.51 | 100.67 | 87.96 | 78.29 | 48.63  |
| Н       | 9.5     | 14  | 14/09/2018 0:53 | -32.4535252 | 115.799294 | 3.674  | 27     | 700.00 | 197.90 | 150.37 | 132.96 | 121.36 | 109.14 | 99.51  | 87.41 | 76.67 | 46.91  |
| Н       | 9.5     | 14  | 14/09/2018 0:53 | -32.4535252 | 115.799294 | 3.674  | 28     | 700.00 | 196.85 | 149.27 | 132.36 | 120.97 | 108.07 | 99.05  | 86.91 | 76.14 | 45.33  |
| Н       | 9.5     | 14  | 14/09/2018 0:53 | -32.4535252 | 115.799294 | 3.674  | 29     | 700.00 | 194.87 | 149.28 | 133.24 | 122.05 | 109.34 | 100.76 | 87.75 | 78.17 | 49.02  |
| н       | 9.5     | 14  | 14/09/2018 0:53 | -32.4535252 | 115.799294 | 3.674  | 30     | 700.00 | 193.88 | 149.46 | 133.82 | 122.66 | 110.29 | 101.49 | 88.55 | 79.18 | 50.32  |



|                                        |               | G        | PS        | Data         | Time  | Tempe     | ratures |        |     | Def | lections (µ | m) Normali | sed To 700 | kPa & Loa | d Distace ( | mm) |      | Cumulatura |          |
|----------------------------------------|---------------|----------|-----------|--------------|-------|-----------|---------|--------|-----|-----|-------------|------------|------------|-----------|-------------|-----|------|------------|----------|
| ARRB_ID                                | Chainage(III) | Latitude | Longitude | Date         | Time  | Surface C | Air C   | ыор мо | 0   | 200 | 300         | 400        | 500        | 600       | 750         | 900 | 1500 | curvature  | comments |
| Run 1 kwinana sensors complete off_0.0 | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:53 | 17        | 18.7    | 5      | 201 | 160 | 136         | 122        | 110        | 97        | 85          | 75  | 44   | 43         | 1        |
| Run 1 kwinana sensors complete off_0.0 | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:54 | 17.2      | 18.7    | 5      | 205 | 161 | 139         | 125        | 109        | 95        | 85          | 75  | 47   | 46         | 1        |
| Run 1 kwinana sensors complete off_0.0 | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:56 | 17.4      | 18.7    | 5      | 206 | 163 | 138         | 123        | 110        | 97        | 84          | 74  | 45   | 47         | 1        |
| Run 1 kwinana sensors complete off_0.0 | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:57 | 17.5      | 18.6    | 5      | 210 | 163 | 139         | 124        | 110        | 98        | 84          | 74  | 45   | 51         | 1        |
| Run 1 kwinana sensors complete off_0.0 | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:59 | 17.5      | 18.6    | 5      | 210 | 168 | 136         | 123        | 109        | 97        | 85          | 75  | 50   | 45         | 1        |
| Run 1 kwinana sensors complete off_0.0 | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 22:00 | 17.5      | 18.7    | 5      | 212 | 165 | 139         | 125        | 110        | 98        | 85          | 75  | 47   | 50         | 1        |
| Run 1 kwinana sensors complete off_0.0 | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 22:02 | 17.6      | 18.7    | 5      | 212 | 164 | 140         | 124        | 110        | 98        | 85          | 74  | 45   | 51         |          |
| Run 1 kwinana sensors offset_0.0       | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:26 | 17.3      | 18.3    | 5      | 203 | 159 | 137         | 123        | 109        | 97        | 83          | 72  | 48   | 48         | 1        |
| Run 1 kwinana sensors offset_0.0       | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:27 | 17.5      | 18.3    | 5      | 205 | 160 | 138         | 123        | 110        | 98        | 84          | 73  | 43   | 47         | 1        |
| Run 1 kwinana sensors offset_0.0       | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:29 | 17.6      | 18.3    | 5      | 206 | 161 | 136         | 125        | 112        | 96        | 82          | 74  | 44   | 48         | -        |
| Run 1 kwinana sensors offset_0.0       | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:30 | 17.6      | 18.3    | 5      | 201 | 163 | 140         | 124        | 110        | 98        | 85          | 73  | 45   | 40         | 1        |
| Run 1 kwinana sensors offset_1.0       | 1             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:32 | 17.7      | 18.4    | 5      | 212 | 162 | 138         | 124        | 108        | 97        | 84          | 74  | 45   | 55         |          |
| Run 1 kwinana sensors offset_1.0       | 1             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:33 | 17.7      | 18.4    | 5      | 213 | 164 | 140         | 124        | 110        | 98        | 84          | 73  | 43   | 52         | 1        |
| Run 1 kwinana sensors offset_1.0       | 1             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:35 | 17.5      | 18.3    | 5      | 225 | 168 | 141         | 126        | 111        | 97        | 84          | 74  | 45   | 60         |          |
| Run 1 kwinana sensors on_0.0           | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:41 | 17.1      | 18.5    | 5      | 224 | 164 | 138         | 126        | 111        | 96        | 82          | 73  | 42   | 64         | 1        |
| Run 1 kwinana sensors on_0.0           | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:42 | 17.3      | 18.5    | 5      | 213 | 165 | 139         | 122        | 107        | 95        | 86          | 72  | 44   | 52         |          |
| Run 1 kwinana sensors on_0.0           | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:43 | 17.5      | 18.5    | 5      | 223 | 162 | 141         | 123        | 112        | 94        | 84          | 72  | 45   | 66         | 1        |
| Run 1 kwinana sensors on_0.0           | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:45 | 17.5      | 18.4    | 5      | 212 | 165 | 137         | 123        | 107        | 94        | 84          | 77  | 45   | 50         |          |
| Run 1 kwinana sensors on_0.0           | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:46 | 17.5      | 18.5    | 5      | 213 | 169 | 140         | 123        | 109        | 96        | 83          | 76  | 51   | 47         |          |
| Run 1 kwinana sensors on_0.0           | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:47 | 17.6      | 18.5    | 5      | 222 | 167 | 140         | 126        | 109        | 97        | 85          | 74  | 46   | 59         | 1        |
| Run 1 kwinana sensors on_0.0           | 0             | -32.4535 | 115.7993  | 26/10.0/2018 | 21:49 | 17.5      | 18.6    | 5      | 240 | 168 | 142         | 125        | 111        | 98        | 86          | 77  | 47   | 76         | 1        |
| TSD Run Trough Site Kwinana_0.0        | 0             | -32.4534 | 115.7995  | 26/10.0/2018 | 21:03 | 17.5      | 18.4    | 5      | 189 | 150 | 129         | 116        | 102        | 93        | 80          | 70  | 43   | 42         |          |
| TSD Run Trough Site Kwinana_5.0        | 5             | -32.4534 | 115.7994  | 26/10.0/2018 | 21:04 | 17.9      | 18.5    | 5      | 199 | 150 | 125         | 112        | 99         | 89        | 75          | 69  | 42   | 52         | 1        |
| TSD Run Trough Site Kwinana_10.0       | 10            | -32.4534 | 115.7994  | 26/10.0/2018 | 21:06 | 17.5      | 18.6    | 5      | 214 | 159 | 133         | 119        | 104        | 94        | 83          | 73  | 41   | 57         |          |
| TSD Run Trough Site Kwinana_15.0       | 15            | -32.4535 | 115.7994  | 26/10.0/2018 | 21:07 | 17.6      | 18.6    | 5      | 208 | 159 | 137         | 122        | 109        | 97        | 83          | 73  | 43   | 51         |          |
| TSD Run Trough Site Kwinana_20.0       | 20            | -32.4535 | 115.7993  | 26/10.0/2018 | 21:08 | 17.6      | 18.6    | 5      | 197 | 158 | 137         | 121        | 107        | 97        | 83          | 72  | 42   | 39         | 1        |
| TSD Run Trough Site Kwinana_25.0       | 25            | -32.4535 | 115.7993  | 26/10.0/2018 | 21:09 | 17.6      | 18.5    | 5      | 219 | 168 | 140         | 127        | 111        | 97        | 84          | 75  | 42   | 51         |          |
| TSD Run Trough Site Kwinana_30.0       | 30            | -32.4536 | 115.7993  | 26/10.0/2018 | 21:10 | 17.5      | 18.5    | 5      | 226 | 168 | 142         | 125        | 109        | 97        | 84          | 74  | 43   | 58         |          |
| TSD Run Trough Site Kwinana_35.0       | 35            | -32.4536 | 115.7992  | 26/10.0/2018 | 21:11 | 17.6      | 18.6    | 5      | 223 | 166 | 140         | 125        | 109        | 97        | 84          | 73  | 44   | 58         | 1        |
| TSD Run Trough Site Kwinana_40.0       | 40            | -32.4536 | 115.7992  | 26/10.0/2018 | 21:12 | 17.7      | 18.6    | 5      | 219 | 170 | 145         | 128        | 113        | 100       | 85          | 75  | 43   | 49         |          |
| TSD Run Trough Site Kwinana_45.0       | 45            | -32.4537 | 115.7991  | 26/10.0/2018 | 21:13 | 17.4      | 18.7    | 5      | 198 | 157 | 137         | 123        | 110        | 97        | 84          | 74  | 43   | 42         |          |
| TSD Run Trough Site Kwinana_50.0       | 50            | -32.4537 | 115.7991  | 26/10.0/2018 | 21:14 | 17.5      | 18.5    | 5      | 208 | 165 | 141         | 126        | 112        | 99        | 85          | 75  | 46   | 44         |          |



# APPENDIX B SUMMARY OF FWD TEST RESULTS – LEACH HIGHWAY

| Station | Surface      | Air          | Time                                 | Latitude                     | Longitude                  | DropID     | Stress           | ND0              | ND200            | ND300            | ND400            | ND500            | ND600            | ND750            | ND900            | ND1500           |
|---------|--------------|--------------|--------------------------------------|------------------------------|----------------------------|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 0       | 11.8<br>11.8 | 13.2<br>13.2 | 11/09/2018 20:35<br>11/09/2018 20:35 | -32.03206253<br>-32.03206253 | 115.8875676<br>115.8875676 | 1          | 700.00           | 575.34<br>565.25 | 440.33<br>432.83 | 366.68<br>361.48 | 317.62<br>313.23 | 274.40 269.62    | 242.02           | 203.43<br>200.84 | 179.57<br>176.16 | 106.89<br>102.74 |
| 0       | 11.8         | 13.2         | 11/09/2018 20:35                     | -32.03206253                 | 115.8875676                | 3          | 700.00           | 560.88           | 431.92           | 359.66           | 314.00           | 269.59           | 240.36           | 201.59           | 183.28           | 106.63           |
| 0       | 11.8<br>11.8 | 13.2<br>13.2 | 11/09/2018 20:35<br>11/09/2018 20:35 | -32.03206253                 | 115.8875676<br>115.8875676 | 4          | 700.00           | 540.35<br>536.87 | 418.22<br>415.56 | 351.97<br>348.59 | 305.77<br>305.35 | 265.09<br>262.83 | 234.19<br>233.13 | 196.77<br>195.15 | 174.06<br>175.45 | 101.99           |
| 0.005   | 12.5         | 13.2         | 11/09/2018 20:36                     | -32.03211714                 | 115.8875242                | 6          | 700.00           | 596.66           | 451.12           | 355.91           | 300.05           | 256.87           | 225.50           | 194.38           | 169.40           | 105.18           |
| 0.005   | 12.5<br>12.5 | 13.2<br>13.2 | 11/09/2018 20:36<br>11/09/2018 20:36 | -32.03211714<br>-32.03211714 | 115.8875242<br>115.8875242 | 7          | 700.00           | 587.71<br>583.99 | 445.25<br>443.13 | 352.21<br>351.24 | 297.04<br>295.58 | 255.11<br>254.15 | 224.59<br>223.48 | 193.57<br>194.05 | 169.18<br>168.94 | 104.94<br>104.13 |
| 0.005   | 12.5         | 13.2         | 11/09/2018 20:36                     | -32.03211714                 | 115.8875242                | 9          | 700.00           | 552.16           | 423.48           | 339.97           | 288.34           | 247.63           | 217.74           | 187.96           | 163.53           | 98.00            |
| 0.005   | 12.5<br>11.7 | 13.2<br>13.2 | 11/09/2018 20:36<br>11/09/2018 20:37 | -32.03211714<br>-32.03214859 | 115.8875242<br>115.887475  | 10         | 700.00           | 548.28<br>643.41 | 420.89<br>480.16 | 338.48<br>382.48 | 286.95<br>322.20 | 247.53<br>271.63 | 217.15<br>238.05 | 188.95<br>202.62 | 162.74<br>178.63 | 100.38<br>99.89  |
| 0.01    | 11.7         | 13.2         | 11/09/2018 20:37                     | -32.03214859                 | 115.887475                 | 12         | 700.00           | 632.84           | 473.06           | 376.84           | 319.33           | 267.88           | 231.89           | 199.24           | 179.82           | 99.93            |
| 0.01    | 11.7<br>11.7 | 13.2<br>13.2 | 11/09/2018 20:37<br>11/09/2018 20:37 | -32.03214859                 | 115.887475<br>115.887475   | 13         | 700.00           | 627.65<br>597.19 | 470.12           | 373.33<br>363.16 | 319.51<br>309.81 | 263.70<br>257.46 | 225.43<br>222.76 | 195.80<br>190.16 | 181.23           | 99.63<br>96.52   |
| 0.01    | 11.7         | 13.2         | 11/09/2018 20:37                     | -32.03214859                 | 115.887475                 | 15         | 700.00           | 596.75           | 450.56           | 363.48           | 309.56           | 257.83           | 223.18           | 190.93           | 175.85           | 106.75           |
| 0.015   | 11.4         | 13.1         | 11/09/2018 20:38                     | -32.03218652                 | 115.8874331<br>115.8874331 | 16<br>17   | 700.00           | 565.44           | 438.30           | 364.96           | 314.01<br>309.86 | 279.51           | 243.64           | 210.87           | 185.27           | 112.42           |
| 0.015   | 11.4         | 13.1         | 11/09/2018 20:38                     | -32.03218652                 | 115.8874331                | 18         | 700.00           | 557.27           | 433.88           | 363.26           | 311.35           | 278.64           | 241.96           | 210.50           | 186.58           | 112.12           |
| 0.015   | 11.4         | 13.1         | 11/09/2018 20:38                     | -32.03218652                 | 115.8874331<br>115.8874331 | 19         | 700.00           | 538.26<br>533.40 | 422.59           | 353.49           | 308.92<br>307.10 | 271.82           | 240.91           | 206.31           | 178.69           | 108.39           |
| 0.015   | 11.9         | 13.1         | 11/09/2018 20:40                     | -32.03219828                 | 115.8873947                | 20         | 700.00           | 645.54           | 458.29           | 349.38           | 292.31           | 253.89           | 224.17           | 194.71           | 170.50           | 110.28           |
| 0.02    | 11.9         | 13.1         | 11/09/2018 20:40                     | -32.03219828                 | 115.8873947                | 22         | 700.00           | 637.49           | 452.79           | 345.21           | 289.33           | 252.00           | 222.77           | 192.81           | 170.46           | 110.16           |
| 0.02    | 11.9         | 13.1         | 11/09/2018 20:40                     | -32.03219828                 | 115.8873947                | 23         | 700.00           | 608.18           | 441.21           | 342.12           | 285.84           | 245.00           | 220.32           | 190.61           | 168.08           | 106.67           |
| 0.02    | 11.9         | 13.1         | 11/09/2018 20:40                     | -32.03219828                 | 115.8873947                | 25         | 700.00           | 597.42           | 439.37           | 340.72           | 286.35           | 249.74           | 220.79           | 191.04           | 168.44           | 107.12           |
| 0.025   | 11.9         | 13.1         | 11/09/2018 20:41                     | -32.03223035                 | 115.8873514                | 27         | 700.00           | 728.60           | 546.94           | 434.42           | 362.43           | 298.03           | 250.41           | 199.80           | 169.96           | 101.33           |
| 0.025   | 11.9         | 13.1         | 11/09/2018 20:41                     | -32.03223035                 | 115.8873514                | 28         | 700.00           | 719.02           | 542.47           | 430.07           | 359.33           | 296.54           | 249.79           | 195.58           | 171.46           | 101.95           |
| 0.025   | 11.9         | 13.1         | 11/09/2018 20:41                     | -32.03223035                 | 115.8873514<br>115.8873514 | 30         | 700.00           | 686.12           | 529.67           | 421.10           | 353.72           | 293.76           | 248.26           | 194.13           | 170.83           | 99.94            |
| 0.03    | 11.9         | 13           | 11/09/2018 20:42                     | -32.03225998                 | 115.8873116                | 31         | 700.00           | 517.85           | 401.02           | 318.45           | 273.71           | 237.85           | 212.71           | 184.74           | 162.80           | 109.07           |
| 0.03    | 11.9         | 13           | 11/09/2018 20:42                     | -32.03225998                 | 115.8873116                | 32         | 700.00           | 512.21           | 398.41           | 317.18           | 273.01 272.02    | 237.58           | 212.00           | 183.42           | 162.09           | 106.43           |
| 0.03    | 11.9         | 13           | 11/09/2018 20:42                     | -32.03225998                 | 115.8873116                | 34         | 700.00           | 495.82           | 391.08           | 313.85           | 272.27           | 238.42           | 211.71           | 183.19           | 162.60           | 102.24           |
| 0.03    | 11.9         | 13           | 11/09/2018 20:42<br>11/09/2018 20:43 | -32.03225998                 | 115.8873116<br>115.8872733 | 35         | 700.00           | 493.11 586.93    | 468.40           | 312.84           | 332.38           | 239.02           | 211.31 248.97    | 209.38           | 163.30           | 98.62            |
| 0.035   | 11.9         | 13.1         | 11/09/2018 20:43                     | -32.03228984                 | 115.8872733                | 37         | 700.00           | 576.49           | 462.93           | 382.85           | 328.35           | 283.81           | 247.28           | 209.02           | 182.32           | 107.15           |
| 0.035   | 11.9<br>11.9 | 13.1<br>13.1 | 11/09/2018 20:43<br>11/09/2018 20:43 | -32.03228984                 | 115.8872733<br>115.8872733 | 38         | 700.00           | 574.80<br>557.21 | 462.02           | 382.70<br>376.09 | 329.36<br>326.30 | 284.85<br>281.29 | 246.93<br>245.85 | 209.50           | 185.63<br>185.01 | 109.41           |
| 0.035   | 11.9         | 13.1         | 11/09/2018 20:43                     | -32.03228984                 | 115.8872733                | 40         | 700.00           | 555.41           | 446.23           | 374.13           | 324.17           | 279.40           | 244.40           | 205.61           | 183.87           | 106.50           |
| 0.04    | 11.9<br>11.9 | 13.2         | 11/09/2018 20:44<br>11/09/2018 20:44 | -32.03231403                 | 115.8872321<br>115.8872321 | 41         | 700.00           | 660.92<br>648.61 | 493.14           | 376.77           | 311.42<br>307.98 | 261.65           | 228.73<br>226.64 | 190.14<br>189.05 | 165.51<br>163.17 | 92.24            |
| 0.04    | 11.9         | 13.2         | 11/09/2018 20:44                     | -32.03231403                 | 115.8872321                | 43         | 700.00           | 646.67           | 484.94           | 371.73           | 308.89           | 259.38           | 226.54           | 189.01           | 164.69           | 91.36            |
| 0.04    | 11.9         | 13.2         | 11/09/2018 20:44                     | -32.03231403                 | 115.8872321                | 44         | 700.00           | 624.96           | 473.88           | 368.33           | 307.40           | 258.75           | 225.71           | 187.44           | 163.87           | 90.85            |
| 0.045   | 12.7         | 13.1         | 11/09/2018 20:45                     | -32.03234618                 | 115.887192                 | 46         | 700.00           | 604.59           | 464.21           | 375.92           | 317.99           | 267.55           | 229.56           | 193.10           | 165.66           | 98.97            |
| 0.045   | 12.7         | 13.1         | 11/09/2018 20:45                     | -32.03234618                 | 115.887192                 | 47         | 700.00           | 589.11           | 454.14           | 369.40           | 314.39           | 264.40           | 227.19           | 190.72           | 164.81           | 97.51            |
| 0.045   | 12.7         | 13.1         | 11/09/2018 20:45                     | -32.03234618                 | 115.887192                 | 48         | 700.00           | 564.34           | 443.20           | 362.71           | 310.36           | 263.05           | 225.73           | 190.23           | 164.41           | 95.12            |
| 0.045   | 12.7         | 13.1         | 11/09/2018 20:45                     | -32.03234618                 | 115.887192                 | 50         | 700.00           | 555.01           | 438.75           | 359.77           | 308.22           | 260.06           | 223.06           | 188.06           | 162.83           | 93.73            |
| 0.054   | 12.8         | 13.3         | 11/09/2018 20:50                     | -32.03239387                 | 115.8871217                | 52         | 700.00           | 663.52           | 494.55           | 374.52           | 310.69           | 262.90           | 228.33           | 192.28           | 168.42           | 102.72           |
| 0.054   | 12.8         | 13.3         | 11/09/2018 20:50                     | -32.03239387                 | 115.8871217                | 53         | 700.00           | 656.44           | 483.30           | 373.71           | 311.52           | 258.78           | 226.01           | 191.26           | 167.43           | 104.63           |
| 0.054   | 12.8         | 13.3         | 11/09/2018 20:50                     | -32.03239387                 | 115.8871217                | 54         | 700.00           | 619.35           | 471.05           | 366.65           | 306.17           | 257.34           | 223.94           | 188.74           | 164.57           | 97.98            |
| 0.05    | 12.7         | 13.3         | 11/09/2018 20:52                     | -32.03237537                 | 115.8871471                | 56         | 700.00           | 620.13           | 482.13           | 376.88           | 308.25           | 257.88           | 223.00           | 188.00           | 166.63           | 98.50            |
| 0.05    | 12.7<br>12.7 | 13.3<br>13.3 | 11/09/2018 20:52<br>11/09/2018 20:52 | -32.03237537<br>-32.03237537 | 115.8871471<br>115.8871471 | 57         | 700.00           | 611.10<br>603.12 | 476.95           | 371.22 367.47    | 306.34<br>304.78 | 257.44 256.21    | 221.83           | 186.10<br>184.11 | 169.15<br>169.98 | 97.20<br>98.50   |
| 0.05    | 12.7         | 13.3         | 11/09/2018 20:52                     | -32.03237537                 | 115.8871471                | 59         | 700.00           | 580.72           | 462.44           | 363.38           | 302.03           | 255.76           | 220.26           | 183.05           | 167.05           | 95.14            |
| 0.05    | 12.7<br>12.5 | 13.3<br>13.4 | 11/09/2018 20:52<br>11/09/2018 20:53 | -32.03237537<br>-32.03243213 | 115.8871471<br>115.8870698 | 60<br>61   | 700.00           | 573.64<br>584.90 | 459.03<br>442.42 | 360.65           | 300.51<br>295.49 | 254.61<br>246.18 | 219.96           | 183.41<br>176.55 | 167.08<br>148.18 | 94.69<br>82.51   |
| 0.06    | 12.5         | 13.4         | 11/09/2018 20:53                     | -32.03243213                 | 115.8870698                | 62         | 700.00           | 579.89           | 433.30           | 344.53           | 291.44           | 242.70           | 209.88           | 175.68           | 147.34           | 82.31            |
| 0.06    | 12.5<br>12.5 | 13.4<br>13.4 | 11/09/2018 20:53<br>11/09/2018 20:53 | -32.03243213                 | 115.8870698<br>115.8870698 | 63<br>64   | 700.00           | 573.29<br>549.74 | 430.83<br>419.09 | 341.88<br>336.93 | 286.77<br>283.72 | 240.51<br>237.66 | 208.65<br>206.88 | 179.74<br>173.69 | 147.87<br>145.33 | 81.44<br>79.55   |
| 0.06    | 12.5         | 13.4         | 11/09/2018 20:53                     | -32.03243213                 | 115.8870698                | 65         | 700.00           | 543.78           | 415.79           | 332.78           | 281.20           | 233.33           | 205.09           | 176.15           | 144.61           | 79.31            |
| 0.065   | 12.5<br>12.5 | 13.4<br>13.4 | 11/09/2018 20:54<br>11/09/2018 20:54 | -32.03245657                 | 115.8870268<br>115.8870268 | 66<br>67   | 700.00           | 567.78<br>560.12 | 417.11           | 324.53<br>318.05 | 269.59<br>267.19 | 223.05<br>221.07 | 193.06<br>192.72 | 159.70<br>163.25 | 136.49<br>132.42 | 79.16<br>78.21   |
| 0.065   | 12.5         | 13.4         | 11/09/2018 20:54                     | -32.03245657                 | 115.8870268                | 68         | 700.00           | 545.11           | 408.07           | 317.64           | 262.90           | 218.98           | 190.44           | 160.05           | 133.85           | 80.95            |
| 0.065   | 12.5<br>12.5 | 13.4<br>13.4 | 11/09/2018 20:54<br>11/09/2018 20:54 | -32.03245657<br>-32.03245657 | 115.8870268<br>115.8870268 | 69<br>70   | 700.00           | 528.41<br>521.37 | 395.53<br>390.43 | 311.29<br>307.48 | 262.75<br>260.38 | 217.02<br>215.18 | 190.24<br>189.79 | 159.66<br>161.01 | 131.88<br>129.84 | 71.60            |
| 0.07    | 12.5         | 13.4         | 11/09/2018 20:55                     | -32.03248795                 | 115.8869866                | 71         | 700.00           | 514.54           | 371.17           | 294.45           | 247.37           | 207.26           | 180.60           | 149.72           | 128.29           | 73.74            |
| 0.07    | 12.5<br>12.5 | 13.4<br>13.4 | 11/09/2018 20:55<br>11/09/2018 20:55 | -32.03248795<br>-32.03248795 | 115.8869866<br>115.8869866 | 72<br>73   | 700.00           | 505.68<br>500 79 | 367.28           | 293.33<br>294 22 | 247.16           | 206.30           | 180.37<br>176.16 | 149.63<br>147.11 | 128.64<br>129.70 | 72.10            |
| 0.07    | 12.5         | 13.4         | 11/09/2018 20:55                     | -32.03248795                 | 115.8869866                | 74         | 700.00           | 480.30           | 356.10           | 291.40           | 245.80           | 201.80           | 176.70           | 147.00           | 128.80           | 71.50            |
| 0.07    | 12.5<br>12.9 | 13.4<br>13.4 | 11/09/2018 20:55<br>11/09/2018 20:56 | -32.03248795<br>-32.03250821 | 115.8869866<br>115.8869443 | 75<br>76   | 700.00           | 478.13<br>603.99 | 353.12<br>451.04 | 293.18<br>349.62 | 247.21<br>289.55 | 197.33<br>243.93 | 175.20<br>206.98 | 146.64<br>168.40 | 132.05<br>147.54 | 72.21            |
| 0.075   | 12.9         | 13.4         | 11/09/2018 20:56                     | -32.03250821                 | 115.8869443                | 77         | 700.00           | 588.69           | 441.77           | 344.31           | 285.32           | 240.80           | 204.68           | 167.58           | 146.06           | 78.53            |
| 0.075   | 12.9<br>12.9 | 13.4<br>13.4 | 11/09/2018 20:56<br>11/09/2018 20:56 | -32.03250821<br>-32.03250821 | 115.8869443<br>115.8869443 | 78<br>79   | 700.00           | 578.09<br>561.64 | 434.87<br>429.97 | 338.35<br>338.28 | 281.12<br>282.47 | 240.73<br>239.30 | 202.81<br>203.42 | 163.54<br>164.67 | 146.19<br>144.42 | 79.29<br>79.56   |
| 0.075   | 12.9         | 13.4         | 11/09/2018 20:56                     | -32.03250821                 | 115.8869443                | 80         | 700.00           | 555.51           | 425.19           | 335.72           | 279.00           | 238.06           | 202.01           | 163.87           | 143.79           | 78.09            |
| 0.08    | 13           | 13.5         | 11/09/2018 20:56                     | -32.03253813                 | 115.886904                 | 81<br>82   | 700.00           | 558.24           | 424.41           | 339.05           | 287.43           | 241.73           | 214.15           | 181.55<br>179.01 | 164.68<br>159.26 | 107.27           |
| 0.08    | 13           | 13.5         | 11/09/2018 20:56                     | -32.03253813                 | 115.886904                 | 83         | 700.00           | 547.32           | 416.15           | 335.58           | 283.61           | 238.72           | 211.23           | 178.29           | 164.25           | 114.01           |
| 0.08    | 13           | 13.5         | 11/09/2018 20:56                     | -32.03253813                 | 115.886904                 | 84         | 700.00           | 528.01           | 405.84           | 327.38           | 279.39           | 237.10           | 209.29           | 175.46           | 160.28           | 111.37           |
| 0.08    | 13           | 13.5         | 11/09/2018 20:56                     | -32.03253813                 | 115.8868648                | 85<br>86   | 700.00           | 536.58           | 414.05           | 341.08           | 278.20           | 250.40           | 216.81           | 185.84           | 158.34           | 95.40            |
| 0.085   | 13           | 13.5         | 11/09/2018 20:57                     | -32.03257432                 | 115.8868648                | 87         | 700.00           | 527.67           | 407.32           | 337.32           | 291.69           | 250.41           | 218.33           | 184.88           | 158.65           | 90.64            |
| 0.085   | 13           | 13.5         | 11/09/2018 20:57                     | -32.03257432                 | 115.8868648                | 89         | 700.00           | 502.14           | 395.22           | 329.17           | 289.54           | 243.77           | 210.07           | 181.27           | 154.51           | 85.40            |
| 0.085   | 13           | 13.5         | 11/09/2018 20:57                     | -32.03257432                 | 115.8868648                | 90         | 700.00           | 493.30           | 393.96           | 327.17           | 281.50           | 239.24           | 207.80           | 180.66           | 154.12           | 94.84            |
| 0.09    | 12.8         | 13.5         | 11/09/2018 20:58                     | -32.03260925                 | 115.8868278                | 91         | 700.00           | 607.00           | 470.36           | 376.82           | 319.58           | 207.54           | 227.63           | 192.00           | 161.89           | 98.08<br>100.55  |
| 0.09    | 12.8         | 13.5         | 11/09/2018 20:58                     | -32.03260925                 | 115.8868278                | 93         | 700.00           | 601.73           | 461.23           | 375.56           | 317.16           | 268.02           | 226.17           | 193.21           | 165.43           | 97.53            |
| 0.09    | 12.8<br>12.8 | 13.5<br>13.5 | 11/09/2018 20:58<br>11/09/2018 20:58 | -32.03260925                 | 115.8868278<br>115.8868278 | 94<br>95   | 700.00           | 5/3.18           | 446.46           | 364.48           | 309.26           | 263.52           | 221.08           | 190.33<br>189.19 | 157.87           | 95.76<br>104.55  |
| 0.095   | 12.4         | 13.5         | 11/09/2018 20:59                     | -32.03263106                 | 115.8867731                | 96         | 700.00           | 637.45           | 482.04           | 370.72           | 301.48           | 254.60           | 214.55           | 178.54           | 153.65           | 91.35            |
| 0.095   | 12.4         | 13.5         | 11/09/2018 20:59<br>11/09/2018 20:59 | -32.03263106<br>-32.03263106 | 115.8867731<br>115.8867731 | 97         | 700.00           | 624.02<br>620.18 | 4/3.41           | 364.51           | 297.07           | 252.93           | 212.32           | 177.67           | 153.41           | 89.51<br>91.26   |
| 0.095   | 12.4         | 13.5         | 11/09/2018 20:59                     | -32.03263106                 | 115.8867731                | 99         | 700.00           | 587.70           | 452.23           | 352.32           | 287.76           | 246.46           | 206.17           | 174.35           | 150.68           | 87.22            |
| 0.095   | 12.4<br>12.5 | 13.5<br>13.4 | 11/09/2018 20:59<br>11/09/2018 21:02 | -32.03263106<br>-32.03265696 | 115.8867731<br>115.8867434 | 100<br>101 | 700.00<br>700.00 | 581.45<br>600.96 | 450.52<br>427.70 | 350.30<br>323.56 | 286.35<br>263.24 | 246.06<br>219.93 | 204.56<br>191.13 | 174.35<br>157.62 | 151.99<br>135.78 | 86.42<br>79.18   |
| 0.1     | 12.5         | 13.4         | 11/09/2018 21:02                     | -32.03265696                 | 115.8867434                | 102        | 700.00           | 592.16           | 421.98           | 321.06           | 260.95           | 218.29           | 190.34           | 159.79           | 137.40           | 81.25            |
| 0.1     | 12.5<br>12.5 | 13.4<br>13.4 | 11/09/2018 21:02<br>11/09/2018 21:02 | -32.03265696<br>-32.03265696 | 115.8867434<br>115.8867434 | 103<br>104 | 700.00<br>700.00 | 587.78<br>550.00 | 419.01<br>404.00 | 318.40<br>311.90 | 260.25<br>253.90 | 216.79<br>212.90 | 188.77<br>186.10 | 159.88<br>159.90 | 136.67<br>135.00 | 80.37<br>78.10   |
| 0.1     | 12.5         | 13.4         | 11/09/2018 21:02                     | -32.03265696                 | 115.8867434                | 105        | 700.00           | 548.35           | 402.63           | 309.63           | 252.88           | 212.71           | 185.80           | 158.58           | 134.88           | 79.64            |

| Station | Surface | Air  | Time             | Latitude | Longitude | DropID    | Stress | ND0     | ND200            | ND300  | ND400  | ND500  | ND600  | ND750  | ND900  | ND1500 |
|---------|---------|------|------------------|----------|-----------|-----------|--------|---------|------------------|--------|--------|--------|--------|--------|--------|--------|
| 0       | 11      | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8876  | 1         | 700.00 | 513.09  | 408.93           | 343.26 | 303.57 | 265.57 | 234.18 | 201.46 | 174.64 | 102.59 |
| 0       | 11      | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8876  | 2         | 700.00 | 502.48  | 403.11           | 338.86 | 299.09 | 261.28 | 230.19 | 198.13 | 172.43 | 101.08 |
| 0       | 11      | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8876  | 3         | 700.00 | 500.09  | 397.86           | 334.38 | 295.38 | 258.22 | 228.33 | 196.71 | 170.88 | 99.65  |
| 0       | 11      | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8876  | 4         | 700.00 | 483.51  | 390.94           | 328.63 | 292.48 | 256.83 | 226.48 | 195.72 | 169.86 | 99.66  |
| 0       | 11      | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8876  | 5         | 700.00 | 482.77  | 389.37           | 326.40 | 290.75 | 254.29 | 224.86 | 194.53 | 169.33 | 98.22  |
| 0.005   | 11.4    | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8875  | 6         | 700.00 | 554.91  | 422.79           | 350.36 | 303.86 | 260.26 | 229.62 | 195.83 | 171.61 | 104.03 |
| 0.005   | 11.4    | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8875  | 7         | 700.00 | 546.77  | 417.25           | 347.63 | 301.96 | 259.66 | 228.22 | 195.15 | 171.69 | 103.07 |
| 0.005   | 11.4    | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8875  | 8         | 700.00 | 538.55  | 413.50           | 342.89 | 297.41 | 255.73 | 226.43 | 193.82 | 170.16 | 104.57 |
| 0.005   | 11.4    | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8875  | 9         | 700.00 | 512.54  | 399.36           | 333.25 | 290.17 | 250.48 | 221.67 | 189.76 | 166.42 | 100.51 |
| 0.005   | 11.4    | 13.9 | 13/09/2018 20:29 | -32.0321 | 115.8875  | 10        | 700.00 | 509.77  | 398.41           | 332.15 | 288.98 | 249.34 | 221.20 | 188.92 | 166.53 | 101.27 |
| 0.01    | 11.3    | 13.8 | 13/09/2018 20:30 | -32.0321 | 115.8875  | 11        | 700.00 | 649.64  | 480.43           | 384.19 | 328.24 | 279.01 | 241.83 | 207.02 | 179.79 | 107.67 |
| 0.01    | 11.5    | 13.0 | 12/09/2018 20:30 | -52.0521 | 115.00/5  | 12        | 700.00 | 622.06  | 405.20           | 374.23 | 221.90 | 274.15 | 234.72 | 207.55 | 177.81 | 111.75 |
| 0.01    | 11.5    | 13.0 | 13/09/2018 20:30 | -32.0321 | 115.00/5  | 13        | 700.00 | 601.84  | 457.55           | 307.09 | 321.10 | 275.82 | 230.78 | 213.40 | 179.20 | 116.25 |
| 0.01    | 11.5    | 13.8 | 13/09/2018 20:30 | -32.0321 | 115.8875  | 14        | 700.00 | 597.84  | 444.00           | 354 58 | 309 17 | 264.57 | 228.37 | 203.41 | 173.95 | 105.75 |
| 0.01    | 11.5    | 13.0 | 13/09/2018 20:30 | -32.0321 | 115 8874  | 15        | 700.00 | 646.23  | 520.73           | 432.76 | 370 32 | 320.27 | 275 79 | 202.03 | 198 11 | 113.86 |
| 0.015   | 11.4    | 13.8 | 13/09/2018 20:31 | -32.0322 | 115 8874  | 17        | 700.00 | 629 50  | 509.70           | 426 32 | 363 38 | 315.43 | 273.73 | 225.71 | 195.88 | 112.00 |
| 0.015   | 11.4    | 13.8 | 13/09/2018 20:31 | -32.0322 | 115.8874  | 18        | 700.00 | 625.11  | 508.69           | 423.89 | 363.42 | 315.13 | 271.22 | 225.30 | 195.82 | 114.03 |
| 0.015   | 11.4    | 13.8 | 13/09/2018 20:31 | -32.0322 | 115.8874  | 19        | 700.00 | 602.42  | 495.18           | 414.92 | 356.57 | 310.27 | 267.85 | 222.15 | 191.98 | 110.83 |
| 0.015   | 11.4    | 13.8 | 13/09/2018 20:31 | -32.0322 | 115.8874  | 20        | 700.00 | 602.56  | 491.59           | 411.55 | 354.67 | 307.74 | 266.58 | 221.24 | 191.80 | 111.36 |
| 0.02    | 11.2    | 13.8 | 13/09/2018 20:32 | -32.0322 | 115.8874  | 21        | 700.00 | 537.85  | 420.00           | 345.84 | 298.11 | 258.71 | 228.23 | 196.91 | 173.41 | 111.73 |
| 0.02    | 11.2    | 13.8 | 13/09/2018 20:32 | -32.0322 | 115.8874  | 22        | 700.00 | 535.43  | 416.17           | 342.47 | 297.41 | 256.54 | 226.17 | 195.56 | 174.07 | 110.86 |
| 0.02    | 11.2    | 13.8 | 13/09/2018 20:32 | -32.0322 | 115.8874  | 23        | 700.00 | 526.79  | 413.21           | 341.11 | 295.06 | 255.68 | 226.42 | 194.44 | 171.73 | 110.62 |
| 0.02    | 11.2    | 13.8 | 13/09/2018 20:32 | -32.0322 | 115.8874  | 24        | 700.00 | 514.54  | 407.53           | 336.93 | 294.48 | 254.15 | 224.48 | 194.01 | 172.49 | 108.92 |
| 0.02    | 11.2    | 13.8 | 13/09/2018 20:32 | -32.0322 | 115.8874  | 25        | 700.00 | 513.81  | 406.93           | 337.24 | 295.90 | 253.66 | 223.98 | 195.41 | 175.15 | 111.53 |
| 0.025   | 11.2    | 13.8 | 13/09/2018 20:33 | -32.0322 | 115.8873  | 26        | 700.00 | 705.53  | 523.40           | 414.23 | 340.05 | 281.11 | 239.84 | 198.82 | 171.56 | 100.82 |
| 0.025   | 11.2    | 13.8 | 13/09/2018 20:33 | -32.0322 | 115.8873  | 27        | 700.00 | 688.00  | 514.63           | 408.38 | 334.50 | 275.38 | 236.50 | 196.13 | 170.63 | 101.00 |
| 0.025   | 11.2    | 13.8 | 13/09/2018 20:33 | -32.0322 | 115.8873  | 28        | 700.00 | 685.44  | 514.02           | 408.47 | 334.96 | 276.36 | 236.93 | 197.14 | 170.09 | 98.75  |
| 0.025   | 11.2    | 13.8 | 13/09/2018 20:33 | -32.0322 | 115.8873  | 29        | 700.00 | 653.96  | 500.20           | 401.58 | 330.99 | 275.05 | 236.53 | 196.44 | 168.02 | 98.51  |
| 0.025   | 11.2    | 13.8 | 13/09/2018 20:33 | -32.0322 | 115.8873  | 30        | 700.00 | 649.01  | 497.34           | 399.89 | 327.37 | 271.85 | 234.54 | 194.11 | 165.85 | 106.21 |
| 0.03    | 11.2    | 13.7 | 13/09/2018 20:34 | -32.0323 | 115.8873  | 31        | 700.00 | 545.39  | 421.35           | 341.28 | 295.72 | 252.61 | 220.56 | 186.42 | 162.23 | 101.07 |
| 0.03    | 11.2    | 13.7 | 13/09/2018 20:34 | -32.0323 | 115.8873  | 32        | 700.00 | 533.07  | 417.02           | 336.84 | 293.53 | 249.84 | 219.18 | 186.67 | 163.71 | 100.04 |
| 0.03    | 11.2    | 13.7 | 13/09/2018 20:34 | -32.0323 | 115.8873  | 33        | 700.00 | 531.70  | 413.36           | 336.59 | 291.56 | 249.24 | 218.37 | 185.76 | 162.88 | 101.49 |
| 0.03    | 11.2    | 13.7 | 13/09/2018 20:34 | -32.0323 | 115.8873  | 34        | 700.00 | 512.87  | 407.82           | 334.12 | 291.18 | 249.24 | 218.89 | 186.13 | 164.17 | 99.86  |
| 0.03    | 11.2    | 13.7 | 13/09/2018 20:34 | -32.0323 | 115.8873  | 35        | 700.00 | 513.23  | 406.82           | 335.11 | 289.66 | 249.32 | 218.15 | 185.06 | 162.13 | 101.88 |
| 0.035   | 11.3    | 13.8 | 13/09/2018 20:35 | -32.0323 | 115.8873  | 36        | 700.00 | 630.98  | 488.90           | 394.26 | 331.12 | 283.56 | 243.35 | 201.79 | 171.63 | 102.61 |
| 0.035   | 11.3    | 13.8 | 13/09/2018 20:35 | -32.0323 | 115.8873  | 37        | 700.00 | 620.07  | 482.03           | 388.25 | 327.08 | 279.26 | 240.28 | 199.33 | 169.79 | 102.24 |
| 0.035   | 11.3    | 13.8 | 13/09/2018 20:35 | -32.0323 | 115 0070  | 38        | 700.00 | 612.69  | 476.77           | 202 52 | 323.16 | 276.91 | 238.45 | 200.40 | 169.43 | 101.91 |
| 0.035   | 11.3    | 13.8 | 13/09/2018 20:35 | -32.0323 | 115.8873  | 39        | 700.00 | 592.22  | 469.28           | 382.52 | 324.82 | 278.12 | 241.55 | 200.18 | 169.94 | 100.54 |
| 0.033   | 11.3    | 14.1 | 13/09/2018 20:33 | -32.0323 | 115 8872  | 40        | 700.00 | 664 57  | 407.00           | 300.47 | 334 62 | 278.08 | 240.70 | 200 53 | 168 54 | 99.80  |
| 0.04    | 11.3    | 14.1 | 13/09/2018 20:39 | -32.0323 | 115 8872  | 41        | 700.00 | 654.41  | 490.77           | 395.38 | 337 31 | 287.03 | 240.29 | 199.16 | 168.34 | 93.01  |
| 0.04    | 11.3    | 14.1 | 13/09/2018 20:39 | -32.0323 | 115 8872  | 42        | 700.00 | 642 12  | 490.23           | 385.62 | 323.66 | 284.01 | 240.49 | 193.10 | 162 14 | 87 19  |
| 0.04    | 11.3    | 14.1 | 13/09/2018 20:39 | -32,0323 | 115.8872  | 43        | 700.00 | 624.70  | 475.30           | 385.70 | 326.20 | 281.50 | 242.30 | 197.70 | 166.20 | 91.60  |
| 0.04    | 11.3    | 14.1 | 13/09/2018 20:39 | -32.0323 | 115.8872  | 45        | 700.00 | 617.12  | 471.03           | 382.65 | 324.64 | 279.40 | 240.66 | 196.82 | 165.56 | 92.07  |
| 0.045   | 11.4    | 14   | 13/09/2018 20:40 | -32.0323 | 115.8872  | 46        | 700.00 | 579.20  | 449.49           | 369.82 | 309.98 | 265.01 | 228.09 | 186.83 | 160.07 | 92.55  |
| 0.045   | 11.4    | 14   | 13/09/2018 20:40 | -32.0323 | 115.8872  | 47        | 700.00 | 570.83  | 442.39           | 362.43 | 306.08 | 258.72 | 225.01 | 186.13 | 159.93 | 93.01  |
| 0.045   | 11.4    | 14   | 13/09/2018 20:40 | -32.0323 | 115.8872  | 48        | 700.00 | 564.34  | 438.58           | 359.17 | 302.92 | 257.20 | 221.52 | 185.22 | 159.82 | 94.78  |
| 0.045   | 11.4    | 14   | 13/09/2018 20:40 | -32.0323 | 115.8872  | 49        | 700.00 | 544.01  | 428.84           | 356.26 | 301.15 | 256.57 | 223.01 | 185.87 | 159.26 | 91.55  |
| 0.045   | 11.4    | 14   | 13/09/2018 20:40 | -32.0323 | 115.8872  | 50        | 700.00 | 539.70  | 426.40           | 352.50 | 299.10 | 254.40 | 221.20 | 186.60 | 161.00 | 94.10  |
| 0.05    | 11.7    | 14   | 13/09/2018 20:41 | -32.0324 | 115.8871  | 51        | 700.00 | 637.26  | 476.84           | 369.44 | 303.25 | 254.29 | 220.83 | 187.24 | 165.59 | 96.20  |
| 0.05    | 11.7    | 14   | 13/09/2018 20:41 | -32.0324 | 115.8871  | 52        | 700.00 | 621.56  | 467.54           | 363.40 | 299.61 | 252.45 | 219.56 | 186.17 | 160.98 | 93.33  |
| 0.05    | 11.7    | 14   | 13/09/2018 20:41 | -32.0324 | 115.8871  | 53        | 700.00 | 618.23  | 467.20           | 363.01 | 298.58 | 252.25 | 219.79 | 186.46 | 162.18 | 93.79  |
| 0.05    | 11.7    | 14   | 13/09/2018 20:41 | -32.0324 | 115.8871  | 54        | 700.00 | 588.08  | 455.25           | 357.77 | 296.63 | 251.32 | 217.97 | 184.51 | 160.31 | 91.41  |
| 0.05    | 11.7    | 14   | 13/09/2018 20:41 | -32.0324 | 115.8871  | 55        | 700.00 | 587.15  | 455.05           | 356.89 | 296.21 | 251.13 | 218.91 | 185.38 | 161.07 | 90.77  |
| 0.055   | 11.4    | 14   | 13/09/2018 20:42 | -32.0324 | 115.8871  | 56        | 700.00 | 655.94  | 470.27           | 352.73 | 291.05 | 241.15 | 209.88 | 177.23 | 155.89 | 92.84  |
| 0.055   | 11.4    | 14   | 13/09/2018 20:42 | -32.0324 | 115.8871  | 57        | 700.00 | 632.47  | 461.85           | 346.17 | 287.41 | 236.05 | 206.67 | 174.20 | 156.91 | 91.98  |
| 0.055   | 11.4    | 14   | 13/09/2018 20:42 | -32.0324 | 115.8871  | 58        | 700.00 | 637.50  | 459.49           | 345.94 | 285.78 | 236.94 | 208.15 | 176.54 | 156.49 | 92.51  |
| 0.055   | 11.4    | 14   | 13/09/2018 20:42 | -32.0324 | 115.8871  | 59        | 700.00 | 608.33  | 446.86           | 339.22 | 282.70 | 234.56 | 205.31 | 172.55 | 153.18 | 90.17  |
| 0.055   | 11.4    | 14   | 13/09/2018 20:42 | -32.0324 | 115.8871  | 60        | 700.00 | 603.75  | 443.74           | 337.13 | 280.91 | 232.43 | 203.97 | 169.27 | 154.78 | 89.61  |
| 0.06    | 11.3    | 14   | 13/09/2018 20:43 | -32.0324 | 115.88/1  | 61        | 700.00 | 593.07  | 437.84           | 344.76 | 292.10 | 243.57 | 209.38 | 1/0.57 | 146.86 | 79.48  |
| 0.06    | 11.3    | 14   | 13/09/2018 20:43 | -32.0324 | 115.8871  | 62        | 700.00 | 586.30  | 430.00           | 341.36 | 288.15 | 241.23 | 206.17 | 167.78 | 148.15 | 80.49  |
| 0.06    | 11.3    | 14   | 13/09/2018 20:43 | -32.0324 | 115.8871  | 64        | 700.00 | 585.44  | 429.37           | 340.03 | 287.79 | 240.80 | 207.09 | 165.36 | 144.03 | 70.82  |
| 0.06    | 11.5    | 14   | 12/09/2018 20:43 | -32.0324 | 115.0071  | 65        | 700.00 | 562.00  | 414.04           | 242 94 | 201.92 | 237.00 | 202.52 | 105.25 | 147.17 | 20 50  |
| 0.00    | 11.3    | 14   | 13/09/2018 20:43 | -32.0324 | 115.887   | 66        | 700.00 | 532.09  | 392.98           | 304 32 | 252.75 | 248.78 | 180 53 | 1/0.10 | 130.80 | 76 14  |
| 0.005   | 11.2    | 14.1 | 13/09/2018 20:44 | -32.0325 | 115.887   | 67        | 700.00 | 527.23  | 387.36           | 300.35 | 251.95 | 208.83 | 179.47 | 149.70 | 132.30 | 76.21  |
| 0.065   | 11.2    | 14.1 | 13/09/2018 20:44 | -32.0325 | 115.887   | 68        | 700.00 | 522.07  | 385.19           | 298.97 | 249.30 | 207.01 | 179.68 | 150.11 | 129.02 | 72.62  |
| 0.065   | 11.2    | 14.1 | 13/09/2018 20:44 | -32.0325 | 115.887   | 69        | 700.00 | 501.10  | 376.40           | 295.10 | 248.70 | 204.60 | 178.30 | 148.10 | 130.60 | 73.20  |
| 0.065   | 11.2    | 14.1 | 13/09/2018 20:44 | -32.0325 | 115.887   | 70        | 700.00 | 495.28  | 376.03           | 295.26 | 247.99 | 206.21 | 179.39 | 149.37 | 130.53 | 77.08  |
| 0.07    | 11.3    | 14   | 13/09/2018 20:45 | -32.0325 | 115.887   | 71        | 700.00 | 489.87  | 367.69           | 291.67 | 247.63 | 209.50 | 180.14 | 149.91 | 129.84 | 74.39  |
| 0.07    | 11.3    | 14   | 13/09/2018 20:45 | -32.0325 | 115.887   | 72        | 700.00 | 479.77  | 360.97           | 287.27 | 243.40 | 204.33 | 175.99 | 151.58 | 127.18 | 74.44  |
| 0.07    | 11.3    | 14   | 13/09/2018 20:45 | -32.0325 | 115.887   | 73        | 700.00 | 476.90  | 359.86           | 285.74 | 242.44 | 204.01 | 175.94 | 152.85 | 127.90 | 73.99  |
| 0.07    | 11.3    | 14   | 13/09/2018 20:45 | -32.0325 | 115.887   | 74        | 700.00 | 461.58  | 352.73           | 284.35 | 240.55 | 200.90 | 175.61 | 153.45 | 125.94 | 71.11  |
| 0.07    | 11.3    | 14   | 13/09/2018 20:45 | -32.0325 | 115.887   | 75        | 700.00 | 457.56  | 350.60           | 282.21 | 239.53 | 200.86 | 174.65 | 153.76 | 125.54 | 70.40  |
| 0.075   | 11.2    | 13.9 | 13/09/2018 20:46 | -32.0326 | 115.887   | 76        | 700.00 | 602.45  | 438.07           | 342.42 | 283.54 | 237.67 | 201.91 | 168.81 | 143.03 | 80.23  |
| 0.075   | 11.2    | 13.9 | 13/09/2018 20:46 | -32.0326 | 115.887   | 77        | 700.00 | 589.98  | 429.30           | 337.15 | 278.41 | 234.48 | 200.45 | 167.66 | 141.47 | 78.44  |
| 0.075   | 11.2    | 13.9 | 13/09/2018 20:46 | -32.0326 | 115.887   | 78        | 700.00 | 583.70  | 425.43           | 334.20 | 277.41 | 234.20 | 200.49 | 167.90 | 142.72 | 80.62  |
| 0.075   | 11.2    | 13.9 | 13/09/2018 20:46 | -32.0326 | 115.007   | /9        | 700.00 | 561.00  | 417.88           | 221.00 | 270.97 | 233.8/ | 200.29 | 167.50 | 1/1 00 | 77.59  |
| 0.075   | 11.2    | 12.9 | 13/09/2010 20:40 | -32.0320 | 115 9960  | 80        | 700.00 | 540 22  | 410.30           | 335.00 | 270.30 | 234.20 | 200.70 | 177 40 | 156 10 | 76.10  |
| 0.08    | 11.3    | 12.9 | 13/09/2018 20:47 | -32.0325 | 115 8860  | 18<br>ro  | 700.00 | 530 40  | 202 02           | 320.09 | 201.00 | 230.52 | 209.50 | 177 /1 | 155 02 | 95.04  |
| 0.08    | 11.3    | 12.9 | 13/09/2018 20:47 | -32 0325 | 115 8860  | <u>مح</u> | 700.00 | 525 75  | 395.02           | 321.30 | 270.54 | 237.53 | 200.40 | 177 29 | 157 60 | 92.10  |
| 0.08    | 11.3    | 13.9 | 13/09/2018 20:47 | -32.0325 | 115.8869  | 84        | 700.00 | 508.15  | 387.29           | 316.89 | 274 17 | 236.52 | 207.59 | 176 40 | 155.75 | 91.50  |
| 0.08    | 11.3    | 13.9 | 13/09/2018 20:47 | -32.0325 | 115.8869  | 85        | 700.00 | 508.72  | 385.35           | 314.55 | 271.54 | 237.08 | 207.61 | 175.55 | 155.23 | 90.81  |
| 0.085   | 11.3    | 13.8 | 13/09/2018 20:48 | -32.0326 | 115.8869  | 86        | 700.00 | 626.61  | 469.93           | 359.66 | 299.32 | 247.89 | 209.87 | 173.87 | 149.03 | 88.82  |
| 0.085   | 11.3    | 13.8 | 13/09/2018 20:48 | -32.0326 | 115.8869  | 87        | 700.00 | 616.66  | 464.67           | 355.63 | 295.79 | 246.59 | 209.76 | 174.51 | 151.87 | 90.80  |
| 0.085   | 11.3    | 13.8 | 13/09/2018 20:48 | -32.0326 | 115.8869  | 88        | 700.00 | 610.36  | 460.53           | 354.10 | 295.67 | 246.43 | 210.12 | 174.69 | 149.57 | 91.51  |
| 0.085   | 11.3    | 13.8 | 13/09/2018 20:48 | -32.0326 | 115.8869  | 89        | 700.00 | 581.44  | 445.23           | 345.91 | 289.97 | 241.61 | 206.31 | 170.01 | 144.89 | 84.36  |
| 0.085   | 11.3    | 13.8 | 13/09/2018 20:48 | -32.0326 | 115.8869  | 90        | 700.00 | 576.98  | 441.89           | 343.72 | 288.25 | 241.32 | 205.88 | 170.04 | 145.89 | 86.10  |
| 0.09    | 11.3    | 13.9 | 13/09/2018 20:49 | -32.0326 | 115.8868  | 91        | 700.00 | 603.05  | 461.05           | 367.34 | 308.70 | 260.53 | 221.85 | 187.04 | 159.84 | 97.95  |
| 0.09    | 11.3    | 13.9 | 13/09/2018 20:49 | -32.0326 | 115.8868  | 92        | 700.00 | 594.51  | 457.10           | 363.43 | 306.87 | 259.42 | 221.34 | 186.58 | 160.95 | 97.36  |
| 0.09    | 11.3    | 13.9 | 13/09/2018 20:49 | -32.0326 | 115.8868  | 93        | 700.00 | 590.33  | 453.28           | 362.40 | 304.56 | 258.51 | 220.56 | 185.07 | 159.40 | 97.88  |
| 0.09    | 11.3    | 13.9 | 13/09/2018 20:49 | -32.0326 | 115.8868  | 94        | 700.00 | 561.01  | 439.41           | 353.72 | 299.11 | 254.25 | 216.74 | 182.54 | 156.49 | 96.45  |
| 0.09    | 11.3    | 13.9 | 13/09/2018 20:49 | -32.0326 | 115.8868  | 95        | 700.00 | 556.13  | 436.66           | 352.38 | 297.15 | 253.03 | 216.74 | 181.74 | 156.06 | 95.88  |
| 0.095   | 11.3    | 13.8 | 13/09/2018 20:50 | -32.0326 | 115.8868  | 96        | 700.00 | 611.25  | 458.88           | 357.25 | 292.88 | 242.25 | 208.13 | 172.88 | 147.63 | 88.25  |
| 0.095   | 11.3    | 13.8 | 13/09/2018 20:50 | -32.0326 | 115.8868  | 97        | 700.00 | 602.32  | 452.39           | 354.34 | 291.42 | 240.90 | 208.14 | 172.52 | 147.70 | 87.13  |
| 0.095   | 11.3    | 13.8 | 13/09/2018 20:50 | -32.0326 | 115.8868  | 98        | 700.00 | 598.23  | 450.78           | 353.60 | 291.42 | 240.90 | 207.89 | 172.39 | 147.32 | 88.24  |
| 0.095   | 11.3    | 13.8 | 13/09/2018 20:50 | -32.0326 | 115.8868  | 99        | 700.00 | 567.58  | 435.85           | 345.91 | 285.28 | 239.02 | 206.41 | 171.31 | 146.68 | 86.45  |
| 0.095   | 11.3    | 13.8 | 13/09/2018 20:50 | -32.0326 | 115.8868  | 100       | /00.00 | 563.99  | 433.56           | 343.02 | 283.29 | 237.12 | 204.72 | 1/0.11 | 145.48 | 85.75  |
| 0.1     | 11.3    | 13.8 | 13/09/2018 20:50 | -32.0327 | 115.8867  | 101       | 700.00 | 564.26  | 389.95           | 292.77 | 242.18 | 202.61 | 176.82 | 151.40 | 131.11 | 81.77  |
| 0.1     | 11.3    | 13.8 | 13/09/2010 20:50 | -32.032/ | 115 2267  | 102       | 700.00 | 5/10 /0 | 304.81<br>282 77 | 290.41 | 239./3 | 201.70 | 176.05 | 150.41 | 121 10 | 77.00  |
| 0.1     | 11.3    | 13.8 | 13/09/2018 20:50 | -32.0327 | 115.8867  | 103       | 700.00 | 518 54  | 371 48           | 283.32 | 235 95 | 199.26 | 174 20 | 149 15 | 128 96 | 74 47  |
| 0.1     | 11.3    | 13.8 | 13/09/2018 20:50 | -32.0327 | 115.8867  | 105       | 700.00 | 517.09  | 370.65           | 283.53 | 235.28 | 199.02 | 173.94 | 148.16 | 129.63 | 74.53  |



| Comment | Surface | Air  | Time             | Latitude | Longitude | DropID | Stress | ND0    | ND200  | ND300  | ND400  | ND500  | ND600  | ND750  | ND900  | ND1500 |
|---------|---------|------|------------------|----------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| В       | 11.1    | 13.8 | 13/09/2018 21:30 | -32.0324 | 115.8871  | 1      | 700.00 | 708.31 | 484.87 | 374.92 | 311.88 | 262.04 | 229.18 | 192.53 | 168.10 | 112.88 |
| В       | 11.1    | 13.8 | 13/09/2018 21:30 | -32.0324 | 115.8871  | 2      | 700.00 | 693.09 | 474.94 | 368.89 | 306.42 | 258.40 | 227.16 | 191.73 | 168.40 | 105.93 |
| В       | 11.1    | 13.8 | 13/09/2018 21:30 | -32.0324 | 115.8871  | 3      | 700.00 | 663.80 | 461.88 | 361.77 | 303.93 | 257.36 | 226.75 | 189.26 | 167.02 | 100.21 |
| В       | 11.1    | 13.8 | 13/09/2018 21:30 | -32.0324 | 115.8871  | 4      | 700.00 | 646.78 | 452.54 | 355.93 | 299.10 | 254.13 | 223.35 | 188.03 | 164.29 | 102.54 |
| С       | 10.9    | 13.9 | 13/09/2018 21:35 | -32.0324 | 115.8871  | 5      | 700.00 | 646.44 | 470.94 | 366.19 | 302.54 | 255.71 | 222.83 | 188.33 | 166.90 | 103.63 |
| С       | 10.9    | 13.9 | 13/09/2018 21:35 | -32.0324 | 115.8871  | 6      | 700.00 | 633.69 | 463.18 | 361.20 | 301.41 | 253.92 | 222.06 | 186.63 | 168.91 | 104.69 |
| С       | 10.9    | 13.9 | 13/09/2018 21:35 | -32.0324 | 115.8871  | 7      | 700.00 | 608.70 | 452.40 | 357.66 | 300.03 | 253.00 | 221.09 | 185.95 | 163.66 | 98.67  |
| С       | 10.9    | 13.9 | 13/09/2018 21:35 | -32.0324 | 115.8871  | 8      | 700.00 | 593.49 | 443.06 | 351.83 | 294.64 | 249.44 | 218.78 | 184.20 | 162.33 | 96.90  |
| D       | 10.7    | 13.9 | 13/09/2018 21:37 | -32.0324 | 115.8871  | 9      | 700.00 | 664.69 | 472.65 | 365.61 | 303.54 | 254.60 | 222.39 | 187.33 | 165.03 | 102.21 |
| D       | 10.7    | 13.9 | 13/09/2018 21:37 | -32.0324 | 115.8871  | 10     | 700.00 | 659.95 | 469.05 | 363.19 | 302.55 | 254.12 | 222.94 | 187.57 | 166.00 | 101.92 |
| D       | 10.7    | 13.9 | 13/09/2018 21:37 | -32.0324 | 115.8871  | 11     | 700.00 | 626.86 | 453.28 | 354.36 | 297.65 | 249.67 | 219.03 | 183.42 | 161.61 | 99.93  |
| D       | 10.7    | 13.9 | 13/09/2018 21:37 | -32.0324 | 115.8871  | 12     | 700.00 | 612.05 | 444.88 | 348.86 | 294.53 | 247.04 | 217.79 | 182.08 | 160.99 | 95.74  |
| E       | 10.7    | 14   | 13/09/2018 21:39 | -32.0324 | 115.8871  | 13     | 700.00 | 643.06 | 459.93 | 357.02 | 295.77 | 249.07 | 218.38 | 185.11 | 162.68 | 105.99 |
| E       | 10.7    | 14   | 13/09/2018 21:39 | -32.0324 | 115.8871  | 14     | 700.00 | 633.49 | 455.37 | 353.99 | 292.33 | 247.86 | 217.47 | 184.47 | 161.30 | 107.86 |
| E       | 10.7    | 14   | 13/09/2018 21:39 | -32.0324 | 115.8871  | 15     | 700.00 | 614.17 | 450.01 | 353.39 | 293.88 | 249.27 | 218.12 | 184.61 | 161.28 | 103.30 |
| E       | 10.7    | 14   | 13/09/2018 21:39 | -32.0324 | 115.8871  | 16     | 700.00 | 595.57 | 440.68 | 347.44 | 288.82 | 245.95 | 215.22 | 181.83 | 157.93 | 101.68 |
| F       | 10.9    | 14   | 13/09/2018 21:40 | -32.0324 | 115.8871  | 17     | 700.00 | 630.00 | 463.97 | 356.98 | 295.82 | 245.50 | 216.60 | 184.22 | 162.54 | 100.14 |
| F       | 10.9    | 14   | 13/09/2018 21:40 | -32.0324 | 115.8871  | 18     | 700.00 | 614.38 | 454.88 | 351.25 | 292.25 | 243.63 | 214.88 | 183.00 | 161.13 | 101.50 |
| F       | 10.9    | 14   | 13/09/2018 21:40 | -32.0324 | 115.8871  | 19     | 700.00 | 595.20 | 446.62 | 349.10 | 291.57 | 244.30 | 215.28 | 181.78 | 159.64 | 96.52  |
| F       | 10.9    | 14   | 13/09/2018 21:40 | -32.0324 | 115.8871  | 20     | 700.00 | 579.63 | 437.69 | 343.43 | 287.31 | 241.57 | 212.87 | 180.00 | 157.96 | 94.72  |
| G       | 10.9    | 14.1 | 13/09/2018 21:44 | -32.0324 | 115.8871  | 21     | 700.00 | 635.20 | 456.05 | 347.65 | 290.04 | 243.95 | 213.72 | 181.38 | 157.47 | 88.96  |
| G       | 10.9    | 14.1 | 13/09/2018 21:44 | -32.0324 | 115.8871  | 22     | 700.00 | 626.79 | 450.49 | 349.01 | 288.27 | 243.33 | 215.80 | 182.96 | 159.01 | 96.05  |
| G       | 10.9    | 14.1 | 13/09/2018 21:44 | -32.0324 | 115.8871  | 23     | 700.00 | 598.33 | 437.57 | 345.04 | 285.26 | 241.08 | 215.86 | 181.11 | 154.99 | 93.63  |
| G       | 10.9    | 14.1 | 13/09/2018 21:44 | -32.0324 | 115.8871  | 24     | 700.00 | 583.33 | 430.41 | 339.96 | 282.79 | 240.68 | 213.07 | 179.51 | 155.62 | 89.34  |
| Н       | 10.9    | 14.1 | 13/09/2018 21:45 | -32.0324 | 115.8871  | 25     | 700.00 | 623.29 | 450.96 | 352.36 | 290.20 | 245.19 | 212.11 | 182.27 | 158.77 | 99.34  |
| Н       | 10.9    | 14.1 | 13/09/2018 21:45 | -32.0324 | 115.8871  | 26     | 700.00 | 625.92 | 451.04 | 350.25 | 289.89 | 246.11 | 213.22 | 182.67 | 160.78 | 94.24  |
| Н       | 10.9    | 14.1 | 13/09/2018 21:45 | -32.0324 | 115.8871  | 27     | 700.00 | 590.24 | 437.55 | 345.84 | 287.14 | 244.50 | 211.98 | 179.86 | 158.24 | 87.35  |
| Н       | 10.9    | 14.1 | 13/09/2018 21:45 | -32.0324 | 115.8871  | 28     | 700.00 | 579.09 | 429.83 | 339.99 | 283.65 | 242.75 | 209.53 | 179.02 | 156.28 | 96.95  |
| H2      | 10.9    | 14   | 13/09/2018 21:48 | -32.0324 | 115.8871  | 29     | 700.00 | 611.64 | 447.11 | 342.24 | 282.22 | 237.73 | 210.49 | 181.04 | 158.61 | 90.21  |
| H2      | 10.9    | 14   | 13/09/2018 21:48 | -32.0324 | 115.8871  | 30     | 700.00 | 602.50 | 440.57 | 339.47 | 280.12 | 235.89 | 209.01 | 180.51 | 157.10 | 92.42  |
| H2      | 10.9    | 14   | 13/09/2018 21:48 | -32.0324 | 115.8871  | 31     | 700.00 | 582.46 | 434.14 | 338.67 | 282.51 | 236.28 | 210.60 | 180.62 | 155.54 | 92.56  |
| H2      | 10.9    | 14   | 13/09/2018 21:48 | -32.0324 | 115.8871  | 32     | 700.00 | 570.81 | 430.24 | 336.28 | 280.94 | 235.93 | 209.62 | 180.59 | 154.47 | 94.05  |
| H2      | 10.9    | 14   | 13/09/2018 21:48 | -32.0324 | 115.8871  | 33     | 700.00 | 607.75 | 439.70 | 331.01 | 273.62 | 226.30 | 203.48 | 177.69 | 153.74 | 93.95  |
| H2      | 10.9    | 14   | 13/09/2018 21:48 | -32.0324 | 115.8871  | 34     | 700.00 | 607.14 | 440.86 | 332.71 | 273.29 | 227.29 | 205.00 | 180.43 | 153.57 | 94.71  |



|                                     |             | G        | PS        |              |       | Tempe     | ratures |         |     | Def | ections (ur | m) Normali | sed To 700 | kPa & Loa | d Distace ( | mm) |      |                  |
|-------------------------------------|-------------|----------|-----------|--------------|-------|-----------|---------|---------|-----|-----|-------------|------------|------------|-----------|-------------|-----|------|------------------|
| ARRB_ID                             | Chainage(m) | Latitude | Longitude | Date         | Time  | Surface C | Air C   | Drop No | 0   | 200 | 300         | 400        | 500        | 600       | 750         | 900 | 1500 | CurvatureComment |
| Run2 Leach on sensors 0.0           | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:08 | 17.4      | 19.1    | 5       | 548 | 407 | 319         | 268        | 229        | 203       | 173         | 152 | 97   | 148              |
| <br>Run2 Leach on sensors_0.0       | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:09 | 17.6      | 19.1    | 5       | 546 | 406 | 317         | 267        | 229        | 202       | 173         | 152 | 96   | 146              |
| Run2 Leach on sensors_0.0           | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:10 | 17.5      | 19.1    | 5       | 540 | 394 | 312         | 264        | 226        | 200       | 171         | 151 | 95   | 155              |
| Run2 Leach on sensors_1.0           | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:12 | 17.5      | 19.1    | 5       | 522 | 391 | 311         | 263        | 225        | 199       | 172         | 150 | 94   | 140              |
| Run2 Leach on sensors_1.0           | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:13 | 17.6      | 19.1    | 5       | 522 | 392 | 308         | 260        | 223        | 198       | 170         | 148 | 91   | 141              |
| Run2 Leach on sensors_1.0           | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:14 | 17.5      | 19      | 5       | 518 | 392 | 307         | 257        | 220        | 197       | 171         | 150 | 88   | 136              |
| Run2 Leach on sensors_1.0           | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:16 | 17.7      | 19      | 5       | 531 | 393 | 308         | 259        | 223        | 197       | 169         | 147 | 89   | 145              |
| Run2 Leach sensors complete off_0.0 | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:34 | 16.8      | 18.6    | 5       | 532 | 400 | 313         | 260        | 220        | 194       | 165         | 145 | 92   | 136              |
| Run2 Leach sensors complete off_0.0 | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:35 | 17.3      | 18.6    | 5       | 527 | 391 | 307         | 256        | 219        | 195       | 165         | 146 | 92   | 148              |
| Run2 Leach sensors complete off_0.0 | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:36 | 17.2      | 18.6    | 5       | 519 | 389 | 303         | 257        | 218        | 192       | 166         | 145 | 94   | 137              |
| Run2 Leach sensors complete off_1.0 | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:38 | 17.4      | 18.6    | 5       | 506 | 384 | 300         | 254        | 216        | 190       | 165         | 144 | 91   | 131              |
| Run2 Leach sensors complete off_1.0 | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:39 | 17.1      | 18.7    | 5       | 512 | 388 | 303         | 254        | 217        | 194       | 167         | 146 | 90   | 132              |
| Run2 Leach sensors complete off_1.0 | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:40 | 17.5      | 18.8    | 5       | 507 | 381 | 301         | 253        | 218        | 196       | 164         | 148 | 90   | 137              |
| Run2 Leach sensors complete off_1.0 | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:41 | 17.4      | 18.8    | 5       | 503 | 390 | 306         | 258        | 222        | 194       | 168         | 147 | 89   | 120              |
| Run2 Leach sensors offset_0.0       | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:21 | 17.2      | 18.8    | 5       | 539 | 401 | 317         | 262        | 223        | 199       | 169         | 147 | 101  | 148              |
| Run2 Leach sensors offset_0.0       | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:22 | 17.2      | 18.8    | 5       | 536 | 400 | 311         | 263        | 225        | 199       | 171         | 148 | 97   | 144              |
| Run2 Leach sensors offset_0.0       | 0           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:24 | 17.3      | 18.8    | 5       | 527 | 391 | 310         | 260        | 223        | 196       | 167         | 149 | 94   | 143              |
| Run2 Leach sensors offset_1.0       | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:25 | 17.4      | 18.9    | 5       | 521 | 389 | 306         | 259        | 221        | 196       | 169         | 149 | 92   | 140              |
| Run2 Leach sensors offset_1.0       | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:26 | 17.3      | 19      | 5       | 519 | 386 | 306         | 257        | 218        | 195       | 168         | 149 | 95   | 141              |
| Run2 Leach sensors offset_1.0       | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:27 | 17.5      | 18.9    | 5       | 513 | 388 | 303         | 257        | 220        | 195       | 168         | 147 | 91   | 133              |
| Run2 Leach sensors offset_1.0       | 1           | -32.0324 | 115.8871  | 27/10.0/2018 | 01:29 | 17.4      | 19      | 5       | 514 | 395 | 307         | 257        | 222        | 194       | 168         | 148 | 89   | 125              |
| Run2 Leach Through site_0.0         | 0           | -32.0323 | 115.8873  | 27/10.0/2018 | 00:50 | 17.7      | 19.4    | 5       | 458 | 355 | 287         | 248        | 214        | 192       | 166         | 148 | 98   | 102              |
| Run2 Leach Through site_5.0         | 5           | -32.0323 | 115.8873  | 27/10.0/2018 | 00:51 | 18.1      | 19.4    | 5       | 561 | 435 | 352         | 306        | 265        | 230       | 198         | 171 | 103  | 125              |
| Run2 Leach Through site_10.0        | 10          | -32.0323 | 115.8873  | 27/10.0/2018 | 00:52 | 18.2      | 19.4    | 5       | 485 | 387 | 318         | 286        | 250        | 222       | 182         | 167 | 104  | 100              |
| Run2 Leach Through site_15.0        | 15          | -32.0323 | 115.8872  | 27/10.0/2018 | 00:53 | 18.1      | 19.4    | 5       | 557 | 435 | 342         | 280        | 232        | 201       | 168         | 143 | 85   | 122              |
| Run2 Leach Through site_20.0        | 20          | -32.0324 | 115.8872  | 27/10.0/2018 | 00:54 | 18.4      | 19.4    | 5       | 585 | 439 | 342         | 291        | 248        | 215       | 182         | 157 | 95   | 147              |
| Run2 Leach Through site_25.0        | 25          | -32.0324 | 115.8871  | 27/10.0/2018 | 00:57 | 17.5      | 19.4    | 5       | 591 | 443 | 338         | 281        | 232        | 202       | 171         | 148 | 89   | 149              |
| Run2 Leach Through site_30.0        | 30          | -32.0324 | 115.8871  | 27/10.0/2018 | 00:58 | 17.6      | 19.5    | 5       | 539 | 405 | 323         | 267        | 220        | 198       | 164         | 147 | 84   | 136              |
| Run2 Leach Through site_35.0        | 35          | -32.0324 | 115.887   | 27/10.0/2018 | 00:59 | 17.4      | 19.4    | 5       | 546 | 420 | 335         | 279        | 236        | 205       | 164         | 146 | 79   | 127              |
| Run2 Leach Through site_40.0        | 40          | -32.0325 | 115.887   | 27/10.0/2018 | 01:00 | 17.6      | 19.4    | 5       | 458 | 340 | 265         | 223        | 189        | 164       | 138         | 121 | 68   | 120              |
| Run2 Leach Through site_45.0        | 45          | -32.0325 | 115.887   | 27/10.0/2018 | 01:01 | 17.8      | 19.4    | 5       | 479 | 363 | 284         | 243        | 211        | 178       | 148         | 131 | 76   | 115              |
| Run2 Leach Through site_50.0        | 50          | -32.0325 | 115.8869  | 27/10.0/2018 | 01:01 | 18.1      | 19.4    | 5       | 668 | 496 | 383         | 312        | 260        | 221       | 181         | 151 | 78   | 171              |



# APPENDIX C SLR CONSULTING INSTALLATION REPORT

# PERMANENT PAVEMENT INSTRUMENTATION

Installation Leach Highway and Kwinana Freeway

**Prepared for:** 

ARRB 21 McLachlan St, Fortitude Valley, QLD4006

SLR

SLR Ref: 610.17345-R01 Version No: -v0.1 September 2018

## PREPARED BY

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia) T: +61 2 9427 8100 F: +61 2 9427 8200 E: sydney@slrconsulting.com www.slrconsulting.com

# BASIS OF REPORT

This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with ARRB (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

## DOCUMENT CONTROL

| Reference          | Date              | Prepared            | Checked      | Authorised          |
|--------------------|-------------------|---------------------|--------------|---------------------|
| 610.17345-R01-v0.1 | 20 September 2018 | Dominik Duschlbauer | Aaron Miller | Dominik Duschlbauer |
|                    |                   |                     |              |                     |
|                    |                   |                     |              |                     |
|                    |                   |                     |              |                     |
|                    |                   |                     |              |                     |

# CONTENTS

| 1       | INTRODUCTION |                                              | 4   |  |
|---------|--------------|----------------------------------------------|-----|--|
| 2       | LEACH        | HIGHWAY ARRAY                                | .5  |  |
|         | 2.1          | Numbering, Sensor Types and Sensor Placement | . 5 |  |
| 3       | KWINA        | ANA FREEWAY ARRAY                            | .9  |  |
|         | 3.1          | Numbering, Sensor Types and Sensor Placement | . 9 |  |
| 4       | CONCL        | USIONS                                       | 13  |  |
| ACCELER | ROMETE       | RS                                           | .2  |  |
| GEOPHO  | DNES         |                                              | .4  |  |
| THERMO  | OCOUPL       | ES                                           | .5  |  |
|         |              |                                              |     |  |

# DOCUMENT REFERENCES

#### TABLES

| 7    | 7 |
|------|---|
| . 1: | 1 |
| 7    | 2 |
| •    |   |

#### FIGURES

| Figure 1 | Approximate Location of the Leach Highway Array | . 5 |
|----------|-------------------------------------------------|-----|
| Figure 2 | Leach Highway Array Geometry                    | . 6 |
| Figure 3 | Approximate Location of the Leach Highway Array | . 9 |
| Figure 4 | Kwinana Freeway Array Geometry                  | 10  |
| Figure 5 | Geophone magnitude characteristics              | 2   |

### APPENDICES

Appendix A Sensor Details Appendix B Accelerometer Calibration Appendix C Geophone Calibration

# 1 Introduction

SLR Consulting Australia Pty Ltd (SLR) was engaged by The Australian Road Research Board (ARRB) to assist with the permanent installation of sensors arrays in two pavements in the greater Perth area, WA.

This report provides an overview of the two installations and the instrumentation deployed.

# 2 Leach Highway Array

The sensors were installed in the night of Tuesday 11 September 2018 to Wednesday 12 September 2018. The site is located at SLK 12.35<sup>1</sup> on the westbound outer (slow) lane of the Leach Highway (**Figure 1**).

Figure 1Approximate Location of the Leach Highway Array



### 2.1 Numbering, Sensor Types and Sensor Placement

**Figure 2** shows the layout of the Leach Highway array. The array was located 1000 mm from the kerb. In **Figure 2**, 'D' refers to the diameter of the hole and 't' refers to the depth of the hole.

**Table 1** shows detailed photographs of each sensor installation before the resin was poured.**Appendix A**contains a general description of the sensors and **Appendix B** and **Appendix C** contain detailed information onthe accelerometers and geophones, respectively.



<sup>&</sup>lt;sup>1</sup> From ARRB's installation plan "180627\_WARRIP Project - JL - installation plan\_Rev01 SN".

All accelerometers and geophones are terminated with BNC leads. The leads are labelled with the serial numbers as well as the name of the hole they are located in.




### Table 1 Leach Highway Instrumentation

| Hole                                                                               | Photo | Comments                                   |
|------------------------------------------------------------------------------------|-------|--------------------------------------------|
| B<br>(D70 mm by t70 mm)                                                            | B     | Geophone #5                                |
| C<br>(D50 mm by t30 mm)                                                            |       | Accelerometer<br>S/N A10575                |
| D<br>(D70 mm by t30 mm<br>for accelerometer)<br>(D70 mm by t70 mm<br>for geophone) |       | Geophone #2<br>Accelerometer<br>S/N A10567 |

| Hole                             | Photo | Comments                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E, F, G, H<br>(D50 mm by t30 mm) |       | Accelerometers<br>E: S/N A10570<br>F: S/N A10637<br>G: S/N A10568<br>H: S/N A10260                                                                                                                                                                                                                                              |
| l<br>(D50 mm by t40 mm)          |       | Two K-type thermocouples. One<br>approximately 10mm from the top.<br>One at the bottom of the 40 mm<br>hole.<br>During the resin pour a lead was<br>observed to rise to the surface and<br>it was pushed back in place. It is<br>not known whether the<br>thermocouple's tip was detached<br>from the concrete in this process. |

# 3 Kwinana Freeway Array

The sensors were installed in the night of Wednesday 12 September 2018 to Thursday 13 September 2018. The site is located at SLK 56.75<sup>2</sup> on the southbound outer (slow) lane of the Kwinana Freeway (**Figure 3**).





# 3.1 Numbering, Sensor Types and Sensor Placement

**Figure 4** shows the layout of the Leach Highway array. The array was located 1000 mm from the kerb. In **Figure 4**, 'D' refers to the diameter of the hole and 't' refers to the depth of the hole.

**Table 2** shows detailed photographs of each sensor installation before the resin was poured. **Appendix A** contains a general description of the sensors and **Appendix B** and **Appendix C** contain detailed information on the accelerometers and geophones, respectively.

All accelerometers and geophones are terminated with BNC leads. The leads are labelled with the serial numbers as well as the name of the hole they are located in.

<sup>&</sup>lt;sup>2</sup> From ARRB's installation plan "180627\_WARRIP Project - JL - installation plan\_Rev01 SN".

### Figure 4 Kwinana Freeway Array Geometry



### Table 2 Leach Highway Instrumentation

| Hole                               | Photo                 | Comments                       |
|------------------------------------|-----------------------|--------------------------------|
| B<br>(D70 mm by t70 mm)            |                       | Geophone #3                    |
| C<br>(D50 mm by t30 mm)            |                       | Accelerometer<br>S/N A10572    |
| D                                  |                       | Geophone #1                    |
| for accelerometer)                 |                       | Accelerometer                  |
| (D70 mm by t70 mm<br>for geophone) |                       | S/N A10639                     |
| E, F, G, H<br>(D50 mm by t30 mm)   |                       | Accelerometers                 |
| (,                                 | and the second second | E: S/N A10569                  |
|                                    | $\square$             | F: S/N A10571                  |
|                                    |                       | G: S/N A10573<br>H: S/N A10638 |
|                                    |                       |                                |

| Hole                     | Photo | Comments                                                                                                                                                                  |
|--------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l<br>(D50 mm by t110 mm) |       | Two K-type thermocouples and two<br>ARRB temperature loggers were<br>used.<br>One pair approximately 40 mm<br>from the top. One pair at the<br>bottom of the 100 mm hole. |



# 4 **Conclusions**

This report presents the sensor and sensor layout of two permanent installations on the Leach Highway and Kwinana Freeway in the greater Perth area, WA.



Sensor Details



# Accelerometers

Dytran model 3305A3 accelerometers with a nominal sensitivity of 500 mV/g were used.

The accelerometers were attached to microdot leads and coated in a protective resin.

Subsequently, the lead to accelerometer connection was heat-shrinked. The heat shrink tube extended approx. 50 mm away from the plug but was not shrunk in order to provide some flexibility as additional protection of the lead particularly as it enters the saw cut.

The accelerometers were cold-welded (JB Weld) into steel enclosures. For the purpose the accelerometer was fixed at the correct angle within the enclosure with bolts. Once the cold-weld had cured, the bolts were removed and more cold-weld was injected through the bolt holes.

M8 anchors were bolted into the steel enclosures. The anchors protruded typically 40 mm to 50 mm.

On site, 9 mm pilot holes were drilled into the bottom of each hole. The pilot hole was filled with epoxy glue (5 min Araldite) and the anchor was glued into the hole. Epoxy glue was also used to level the contact zone of the steel enclosure and the bottom of the hole.

The accelerometers had approximately 10 mm of resin cover.







Arrangement prior to the accelerometer being coldwelded into the enclosure. The two bolts were removed and the through-holes were used to inject more cold-weld.



Accelerometer prior to installation (above) and installed in hole before being covered with resin (below).





# Geophones

Geophones with an internal resistance of 400 Ohm were used. Shaker tests were carried out on all geophones and their natural frequency was nominally 10.5 Hz with nominal sensitivity of 28 V per m/s above the natural frequency.

The terminals of the geophones were coated with resin for moisture protection. Subsequently, a protective cap was glued over the terminals of each geophone.

A M8 anchor was cold-welded (JB Weld) to the underside of each geophone.

On site, 9 mm pilot holes were drilled into the bottom of each hole. The pilot hole was filled with epoxy glue (5 min Araldite) and the anchor was glued into the hole. Epoxy glue was also used to level the contact zone of between the geophone and the bottom of the hole. A protective plastic cup was glued over the geophones to ensure that the resin does not directly touch the geophone due to concerns that stresses imposed on the geophones' bodies may give rise to incorrect readings.

From the top of the protective cup the resin cover was approximately 10 mm.





Geophone with protective cap in place and anchor cold-welded.

Geophone terminals (uncoated)





# Thermocouples

Welded tip 'gas and water tight' PTFE thermocouples Type K with 10 m leads were used. The thermocouples were pushed into holes drilled into the pavement and epoxy glued in place to ensure the thermocouples stay in place as the resin was poured.

A separate, ARRB owned, temperature logger was deployed at the Kwinana site.







# **APPENDIX B**

Accelerometer Calibration



### Table 3 Accelerometer Summary

|       | Nominal            | Nominal               |             | Measured    |                |
|-------|--------------------|-----------------------|-------------|-------------|----------------|
| S/N   | Sensitivity [mV/g] | Sensitivity [mV/m/s2] | Lead length | Sensitivity | Location, Hole |
| 10572 | 500.06             | 51.0                  | long        | 500.1       | Kwinana, C     |
| 10638 | 494.34             | 50.4                  | long        | 494.0       | Kwinana, H     |
| 10637 | 494.35             | 50.4                  | long        | 494.3       | Leach, F       |
| 10567 | 511.58             | 52.1                  | long        | 511.4       | Leach, D       |
| 10568 | 494.34             | 50.4                  | long        | 494.2       | Leach, G       |
| 10570 | 510.89             | 52.1                  | short       | 510.8       | Leach, E       |
| 10569 | 501.53             | 51.1                  | short       | 501.5       | Kwinana, E     |
| 10573 | 504.43             | 51.4                  | long        | 504.3       | Kwinana, G     |
| 10571 | 503.06             | 51.3                  | short       | 503.1       | Kwinana, F     |
| 10639 | 497.1              | 50.7                  | short       | 497.0       | Kwinana, D     |
| 10260 | 485.93             | 49.5                  | short       | 485.9       | Leach, H       |
| 10575 | 495.1              | 50.5                  | short       | 495.1       | Leach, B       |





Geophone Calibration



The geophones have been tested on a shaker and their frequency dependent sensitivity has been determined. The magnitude relationship is shown in **Figure 5** and closely resembles the theoretical relationship which can be described by this equation:

$$H = \frac{a \times \omega^2}{\omega^2 + \frac{\omega \times \omega_n}{Q} + \omega_n^2}$$

Where  $\omega$  is the complex circular frequency and  $\omega_n$  is the geophone's resonant circular frequency. Q is the quality factor (the inverse of twice the damping) and *a* is a constant. The installed geophones can be modelled with the following parameters:

- $\omega_n$  is  $2 \times \pi \times f$  and f is 10.5 Hz
- Q is 1.45
- a is 28.4.



### Figure 5 Geophone magnitude characteristics

## ASIA PACIFIC OFFICES

#### BRISBANE

Level 2, 15 Astor Terrace Spring Hill QLD 4000 Australia T: +61 7 3858 4800 F: +61 7 3858 4801

#### МАСКАУ

21 River Street Mackay QLD 4740 Australia T: +61 7 3181 3300

#### ROCKHAMPTON

rockhampton@slrconsulting.com M: +61 407 810 417

#### AUCKLAND

68 Beach Road Auckland 1010 New Zealand T: +64 27 441 7849

### CANBERRA

GPO 410 Canberra ACT 2600 Australia T: +61 2 6287 0800 F: +61 2 9427 8200

#### MELBOURNE

Suite 2, 2 Domville Avenue Hawthorn VIC 3122 Australia T: +61 3 9249 9400 F: +61 3 9249 9499

#### SYDNEY

2 Lincoln Street Lane Cove NSW 2066 Australia T: +61 2 9427 8100 F: +61 2 9427 8200

#### NELSON

5 Duncan Street Port Nelson 7010 New Zealand T: +64 274 898 628

#### DARWIN

5 Foelsche Street Darwin NT 0800 Australia T: +61 8 8998 0100 F: +61 2 9427 8200

#### NEWCASTLE

10 Kings Road New Lambton NSW 2305 Australia T: +61 2 4037 3200 F: +61 2 4037 3201

#### TAMWORTH

PO Box 11034 Tamworth NSW 2340 Australia M: +61 408 474 248 F: +61 2 9427 8200

#### **NEW PLYMOUTH**

Level 2, 10 Devon Street East New Plymouth 4310 New Zealand T: +64 0800 757 695

#### **GOLD COAST**

Ground Floor, 194 Varsity Parade Varsity Lakes QLD 4227 Australia M: +61 438 763 516

#### PERTH

Ground Floor, 503 Murray Street Perth WA 6000 Australia T: +61 8 9422 5900 F: +61 8 9422 5901

#### TOWNSVILLE

Level 1, 514 Sturt Street Townsville QLD 4810 Australia T: +61 7 4722 8000 F: +61 7 4722 8001