

WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

High Modulus Asphalt (EME2) Tonkin Hwy - Kelvin Road Intersection

WILLIE VALENZUELA & LINCOLN LATTER

AN INITIATIVE BY:

High Modulus Asphalt (EME2)

Report 3 of 3

Main Roads Western Australia for

Reviewed

Project Leader

Quality Manager

Willie Valenzuela Aleweger

Dr Elsabe van Aswegen

PRP-16-8 August 2018

ABN 68 004 620 651

Victoria

500 Burwood Highway Vermont South VIC 3133 Australia P: +61 3 9881 1555 F: +61 3 9887 8104 info@arrb.com.au

Western Australia

191 Carr Place Leederville WA 6007 Australia P: +61 8 9227 3000 F: +61 8 9227 3030 arrb.wa@arrb.com.au

New South Wales

2-14 Mountain St Ultimo NSW 2007 Australia P: +61 2 9282 4444 F: +61 2 9280 4430 arrb.nsw@arrb.com.au

Queensland

123 Sandgate Road Albion QLD 4010 Australia P: +61 7 3260 3500 F: +61 7 3862 4699 arrb.qld@arrb.com.au

South Australia

Level 11. 101 Grenfell Street Adelaide SA 5000 Australia P: +61 8 7200 2659 F: +61 8 8223 7406 arrb.sa@arrb.com.au

International office

770 Pennsylvania Drive Suite 112 Exton, PA 19341 USA Tel: 610-321-8302 Fax: 610-458-2467

SUMMARY

This report presents details of an EME2 (Enrobés á Module Élevé Class 2) asphalt production and placement pre-trial and trial that took place in April 2017 at the intersection of the Tonkin Highway and Kelvin Road in Perth, Western Australia. The purpose of the trial was to confirm that the design mix could be manufactured, placed and compacted to the expected standards using local materials and locally-available equipment. A key aspect was to include guidance on the construction process with input from expert EME2 practitioners brought over for the trial. The conduct of a successful trial would assist Main Roads and industry to successfully transfer the French EME2 technology to Western Australia. The trial was conducted as part of the Western Australia Road Research and Innovation Program (WARRIP).

Based on the results of laboratory testing conducted on cores, it can be concluded that EME2 can be successfully produced and placed using local aggregates and locally-available equipment. EME2 achieved the target thickness, very high density and low in situ air voids on both layers.

To achieve optimum quality control, it is essential that a thorough plan – in terms of production, placement and safety – be developed if EME2 asphalt is to be successfully implemented.

It is recommended that, during compaction, the rollers should not remain stationary on the newly-compacted asphalt or following the completion of the works until it cools as this could leave deep imprints on the asphalt surface. It is also recommended that the method of joint construction adopted for Lift 2 of the trial be adopted for future EME2 asphalt pavements to reduce air voids along the joint lines.

This report also summarises the knowledge transfer activities undertaken and the proposed changes to the current Main Roads EME2 specification and Engineering Road Note.

Although the Report is believed to be correct at the time of publication, Australian Road Research Board, to the extent lawful, excludes all liability for loss (whether arising under contract, tort, statute or otherwise) arising from the contents of the Report or from its use. Where such liability cannot be excluded, it is reduced to the full extent lawful. Without limiting the foregoing, people should apply their own skill and judgement when using the information contained in the Report.

ACKNOWLEDGEMENTS

The authors acknowledge the assistance of Main Roads WA, the Queensland Department of Transport and Main Roads, Downer Group WA, SAMI Bitumen Technologies and Mr Pierrick Dupuy of COLAS in the conduct of this project and the preparation of this report.

CONTENTS

1		1
1.1 2	Details of the Trial THICKNESS DESIGN	1 3
2.1	Introduction	3
2.2	 Austroads Design Method	3 3 4 5
2.3	French Pavement Design	6
3	EME2 MIX DESIGN	10
3.1	Mix Design Requirements	10
3.2	Downer Group Laboratory Test Results	10
3.3	French Laboratory Test Results	12
3.4	Aggregate Requirements	13
4	DOWNER GROUP YARD PRE-TRIAL	15
4.1	Pavement Composition of Pre-trial	15
4.2	Production and Construction4.2.1Paving4.2.2Compaction	15 15 15
4.3	Quality Control	16
4.4	Findings and Recommendations	16
5	TONKIN HIGHWAY TRIAL DETAILS	17
5.1	Location	17
5.2	Construction of Subbase	17
6	PRODUCTION OF EME2	20
6.1	Asphalt Plant	20
6.2	Materials Management6.2.1Aggregate6.2.2Binder6.2.3Additives	21 21 21 21
6.3	Process Control	22
7	ASPHALT CONSTRUCTION	24
7.1	Transportation of the EME2 Asphalt Mix	24

7.2	Asphalt Paving	. 26
7.3	Compaction 7.3.1 Plant 7.3.2 Rolling Pattern	. 29 . 29 . 30
7.4	Joint Construction	. 30
7.5	Temperature Monitoring of EME2 Mix7.5.1Temperatures Monitoring during Paving using Thermography	. 31 . 32
7.6	Surface Levels of the EME2 Mix	. 35
7.8 8	Wearing Course CONFORMANCE AND RESEARCH TESTING	. 39 . 40
8.1	Introduction	. 40
8.2	Compaction Results.8.2.1Air Voids of Field Cores.8.2.2Air Voids of Field Cores Upper and Lower Half	. 41 . 41 . 43 . 45
8.3	Compacted Thickness	. 49
8.4	Mix Conformance 8.4.1 Main Roads Results 8.4.2 Downer Group Results	. 49 . 49 . 51
8.5	Shape of EME2	. 52
8.6	Surface Texture	. 54
8.8 9	Binder Results PERFORMANCE TESTING	. 55 . 63
9.1	Introduction	. 63
9.2	Workability	. 63
9.3	Moisture Sensitivity	. 64
9.4	Rut Resistance (Wheel Tracking)	. 64
9.5	Flexural Modulus	. 65
9.6	Fatigue Resistance	. 66
9.7	Resilient Modulus	. 68
9.8	Richness Modulus	. 69
9.9	Voids in Dry Compacted Filler – Delta Ring and Ball	. 70
9.10	Hamburg Wheel Tracking Device Testing	. 70
9 1 1	Performance Testing Summary	. 73

10	KNOWLEDGE T	RANSFER	. 75
10.1	Tonkin Highway	Trial Workshop	. 75
10.2	Asphalt Industry	Workshop	. 76
11	CONCLUSIONS	AND RECOMMENDATIONS	. 78
12	MAIN ROAD DO	CUMENTATION RECOMMENDATIONS	. 79
REFE	RENCES		. 81
APPE	ENDIX A	SAMPLING AND TESTING PLAN	. 85
APPE	ENDIX B	PRE-TRIAL TEST RESULTS	. 87
APPE	ENDIX C	IN SITU DENSITY, THICKNESS AND AIR VOIDS RESULTS OF ASPHALT	104
APPE	INDIX D	IN SITU DENSITY RESULTS: SUBGRADE AND SUBBASE	109
APPE	ENDIX E	DRYBACK	110
APPE	ENDIX F	SURFACE SHAPE RESULTS	111
APPE	ENDIX G	SURFACE TEXTURE RESULTS	115
APPE	ENDIX H	TENSILE STRENGTH RATIO	116
APPE	NDIX I	WHEEL TRACKING TEST RESULTS	122
APPE	NDIX J	FLEXURAL MODULUS RESULTS	124
APPE		FATIGUE RESISTANCE RESULTS	127
APPE			128
APPE			136
APPE		VOIDS IN COMPACTED DRY FILLER AND DELTA RING AND BALL	420
			130
			143
			147

TABLES

Table 2.1:	Design traffic data: Tonkin Highway, southbound carriageway	3
Table 2.2:	Design modulus determination: 14 mm intersection mix A15E	4
Table 2.3:	Presumptive values for elastic characterisation of EME2 at WMAPT 32 °C and 29 °C	5
Table 2.4	Pavement design details: Tonkin Highway, southbound (10 km/h)	5
Table 2.5	Design input for the Australian design procedure based upon French	
	mechanistic procedure	7
Table 2.6:	Comparison of the French and Australian pavement design input	8
Table 2.7:	Tonkin Highway EME2 trial, pavement design according to French	
	method NF P 98-086/ALIZE	8
Table 2.8:	Pavement thickness design according to French method NF P98-086/ALIZE-EME2	9
Table 3.1:	Properties of EME2 binder	10
Table 3.2:	Main Roads draft specification 514 EME2 mix design criteria and test	
	results	11
Table 3.3:	Design and target particle size distribution	11
Table 3.4:	Properties of EME2 binder tested by European laboratory	12
Table 3.5:	Specification properties of EME2 tested by European laboratory	12
Table 3.6:	Design mix particle size distribution: EN 12697-35 by European	
	laboratory	13
Table 3.7:	Aggregates specifications	14
Table 3.8:	Filler specifications	14
Table 7.1:	Truck delivery times and mix temperatures (26/4/17)	24
Table 7.2:	Truck delivery times and mix temperatures (27/4/17)	
Table 7.3:	EME2 mix survey level summary	
Table 8.1:	Record of guality assurance testing results	
Table 8.2:	Volumetric properties Main Roads	
Table 8.3:	Volumetric properties Downer Group	51
Table 8.4:	Pre-trial binder properties (12/04/17)	
Table 8.5:	S6799 sampled at 40 tonnes of EMÉ2 asphalt production (pre-trial	56
Table 8.6.	S6800 sampled at 05 toppes of EME2 asphalt production (pre-trial	
		57
Table 8 7.	S6802 sampled at 5 000 litres (trial 26/04/17)	57
Table 8.8	S6002 sampled at 10 000 litres (trial $26/04/17$)	57
Table 8.0	S6917 sampled at 12 500 litres (trial $26/04/17$)	58
Table 8 10 [.]	S6893 sampled at 5 000 litres (trial $26/04/17$)	58
Table 8 11:	S6912 sampled at 10 000 litres (trial 26/04/17)	59
Table 8 12:	S6894 sampled at 15 000 litres (trial 26/04/17)	59
Table 8 13:	S6895 sampled at 5 000 litres (trial 27/04/17)	59
Table 8 14:	S6921 sampled at 10 000 litres (trial 27/04/17)	60
Table 8 15:	S6896 sampled at 15 000 litres (trial 27/04/17)	60
Table 8 16:	S6897 sampled at 5 000 litres (trial 27/04/17)	60
Table 8 17:	S6922 sampled at 10 000 litres (trial 27/04/17)	61
Table 8 18:	S6923 sampled at 12 000 litres (trial 27/04/17)	62
Table 9.1	Performance laboratory testing for EME2 specimens	63
Table 9.2	Summary of air voids in specimens compacted by dynatory compactor	
. 4510 0.2.	(100 cvcles)	64
Table 9.3	Summary of wheel tracking test results	
Table 9.4	Flexural modulus results for master curves	66
Table 9.5	Fatigue resistance results	67
Table 9.6	Voids and dry compacted filler test and delta ring and ball test results	
	for EME2 mix	70
Table 9.7:	Hamburg wheel track testing results for EME2 mix	

Table 9.8:	Summary of performance testing of EME2 asphalt mix	73
Table 10.1:	Tack coat application rates	76

FIGURES

Figure 2.1:	EME2 trial pavement thickness design	6
Figure 2.2:	Temperature dependency of different asphalt types (complex modulus	
0	at 10 Hz, 2-point bending)	7
Figure 3.1:	Design mix particle size distribution	12
Figure 3.2:	PSD by European laboratory	13
Figure 5.1:	Map of the trial	17
Figure 5.2:	Construction of subbase	18
Figure 5.3:	Vibrating smooth drum roller	18
Figure 5.4:	Thickness of subbase	18
Figure 5.5:	Multi-tyred roller	18
Figure 5.6:	Visual inspection of subbase	19
Figure 5.7:	Subbase ready for asphalt placement	19
Figure 5.8:	Measured surface levels of subbase	19
Figure 6.1:	Location of Downer Group asphalt plant	20
Figure 6.2:	Downer Group plant used for the trial	20
Figure 6.3:	Computer screen indicating production tonnes per hour and	
C C	temperature	21
Figure 6.4:	EME2 road tanker	22
Figure 6.5:	EME2 being pumped to the plant	22
Figure 6.6:	Monitoring of tank temperature	22
Figure 6.7:	EME2 binder sampling	23
Figure 6.8:	Line sampling heating	23
Figure 7.1:	EME2 asphalt being delivered	24
Figure 7.2:	Limestone subbase marked ready for EME2 mix placement	26
Figure 7.3:	Paver CAT AP65D	27
Figure 7.4:	Paver operation	27
Figure 7.5:	Paving operation southbound	27
Figure 7.6:	Roller cutting edge	27
Figure 7.7:	Paving of Laver 1 of LR1	28
Figure 7.8:	Application of tack coat	28
Figure 7.9:	Placement of second layer of EME2 asphalt	28
Figure 7.10:	Vibrating smooth drum roller	29
Figure 7.11:	Multi tyred roller behind the vibrating roller	29
Figure 7.12:	Multi-tyred roller behind the vibrating roller	29
Figure 7.13:	Static rolling to finish	29
Figure 7.14:	Cut edge with excess material	31
Figure 7.15:	Roller pressing pavement edge	31
Figure 7.16:	Joint overlapping from paver	31
Figure 7.17:	Finished Layer 2 joint	31
Figure 7.18:	Mat temperature with thermal imager	32
Figure 7.19:	Mat compactor with digital thermometer	32
Figure 7.20:	EME2 on hopper between haul loads	32
Figure 7.21:	Surface temperature monitoring	32
Figure 7.22:	Thermal image of the mix in the truck	33
Figure 7.23:	Thermal image behind the paver	33
Figure 7.24:	Temperature no less than 140 °C	33
Figure 7.25:	Temperature between 160 °C and 170 °C	33
Figure 7.26:	Monitoring mat temperature	34
Figure 7.27:	Mat temperature during roller operation	34
Figure 7.28:	Paving line joint	34

Figure 7.29:	Joint temperature	. 34
Figure 7.30:	Variation temperature	. 35
Figure 7.31:	Details of variation temperature	. 35
Figure 7.32:	Measured levels of EME2 Lift 1 LR1	. 36
Figure 7.33:	Measured levels of EME2 Lift 1 LR2	. 36
Figure 7.34:	Measured levels of EME2 Lift 2 LR1	. 37
Figure 7.35:	Measured levels of EME2 Lift 2 LR2	. 37
Figure 7.36:	Surface appearance after compaction	. 38
Figure 7.37:	Finished surface	. 38
Figure 7.38:	Surface flush patches	. 38
Figure 7.39:	Finished wearing course and line marking	. 39
Figure 8.1:	Sampling of EME2 from plant	. 40
Figure 8.2:	Distribution of the samples	. 40
Figure 8.3:	Air voids Lift 1 (LR1 & LR2)	. 41
Figure 8.4:	Air voids Lift 2 (LR1 & LR2)	. 42
Figure 8.5:	Core results bitumen rich surface, Lift 2 (LR1 & LR2)	. 42
Figure 8.6:	Nuclear gauge results bitumen rich surface, Lift 2 (LR1 & LR2)	. 43
Figure 8.7:	Air voids lower and upper layer of Lift 1 (LR1 and LR2)	. 44
Figure 8.8:	Air voids lower and upper layer of Lift 2 (LR1 & LR2)	. 44
Figure 8.9:	Trend line of lower half air voids	. 45
Figure 8.10:	Nuclear gauge air voids results: Lift 1 (LR1)	. 46
Figure 8.11:	Nuclear gauge air voids results: Lift 1 (LR2)	. 46
Figure 8.12:	Nuclear gauge air voids results: Lift 2 (LR1 & LR2)	. 47
Figure 8.13:	Core vs. nuclear gauge air voids results: Lift 2 (LR1 & LR2)	. 47
Figure 8.14:	Nuclear gauge densities recorded in the joint lines	. 48
Figure 8.15:	Joint air voids: Layer 1 (LR1 & LR2)	. 48
Figure 8.16:	Joint air voids: Layer 2 (LR1 & LR2)	. 48
Figure 8.17:	Full depth cores	. 49
Figure 8.18:	Cores of Layer 1 and Layer 2	. 49
Figure 8.19:	PSD results of EME2 mix (26/04/17)	. 50
Figure 8.20:	PSD results of EME2 mix (27/04/17)	. 50
Figure 8.21:	PSD results of EME2 mix (26/04/17)	. 51
Figure 8.22:	PSD results of EME2 mix (27/0417)	. 52
Figure 8.23:	Checking shape in a transverse direction using 3 m straight edge	. 53
Figure 8.24:	Walking profiler results for IRI of EME2 Lift 1 & Lift 2	. 54
Figure 8.25:	Walking profiler results for NAASRA counts of EME2 Lift 1 & Lift 2	.54
Figure 9.1:	TSR results of EME2 mix Lift 1 & Lift 2	. 64
Figure 9.2:	Master curve comparison for varying air voids	66
Figure 9.3:	Fatigue resistance results for EME2 mix	. 67
Figure 9.4:	Resilient modulus of EME2 pre-trial, plant mixed (sampled 12/04/17)	. 68
Figure 9.5:	Resilient modulus of EME2 mix Layer 1, plant mixed (sampled 26/04/17)	. 68
Figure 9.6:	Resilient modulus of EME2 mix Layer 2, plant mixed (sampled 27/04/17)	60
Figure 9.7	Hamburg wheel track test results for all slabs	.71
Figure 9.8:	Hamburg wheel track test results for all cores	72
Figure 10.1	Recommended compaction operation	76
	······································	

1 INTRODUCTION

EME2 is a high modulus asphalt where mixes are produced using a hard-paving grade bitumen which is applied at a higher binder content (approximately 6%) with low air voids content (typically 2–4%) compared with conventional asphalt with unmodified binders. High modulus asphalt is characterised by high stiffness, high durability, superior resistance to permanent deformation, good fatigue resistance and good workability. As a result, it potentially allows for a significant reduction in pavement thickness.

This report presents a record of an EME2 (Enrobés á Module Élevé Class 2) asphalt production and placement field trial as well as a pre-trial performed on 12 April 2017 at Downer Group's asphalt plant yard in Gosnells to adjust the EME2 construction processes (details are presented in Appendix B). The main trial took place on 26 and 27 April 2017 at the intersection of the Tonkin Highway and Kelvin Road in Orange Grove, WA. The purpose of the trial was to confirm that the design mix could be manufactured, placed and compacted to the expected standards using local aggregates and locally-available equipment. A key aspect was to include guidance on construction processes with input from expert EME2 practitioners brought over for the trial. The conduct of a successful trial would assist Main Roads Western Australia (Main Roads) and industry to successfully transfer the French EME2 technology to Western Australia. The trial was conducted as part of the Western Australia Road Research and Innovation Program (WARRIP).

The mix was produced at Downer Group's Gosnells plant. The total quantities of EME2 that were produced and placed for the pre-trial and main trial were 100 tonnes and 998 tonnes respectively.

1.1 Details of the Trial

The trial involved the following tasks:

- design of an EME2 asphalt mix in accordance with the Australian EME2 asphalt mix design process
- validate the EME2 asphalt mix in a French EME2 asphalt laboratory to confirm compliance with French methods
- identify the location of the trial and selection of a suitable test site
- develop a draft guideline for the structural design of pavements containing EME2
- design and construct a full-depth EME2 asphalt pavement overlaid with a standard asphalt wearing course
- manufacture the EME2 mix in line with Main Roads' Draft Specification 514 High Modulus Asphalt (EME2) (Main Roads 2016b)
- report the findings of the trial and use of this information to revise, if necessary, Main Roads Specification 514 (Main Roads 2016b) and Main Roads Engineering Road Note 13 (ERN13) (Main Roads 2016c).

In addition, there was a need to assess the feasibility of producing and constructing EME2 using asphalt plants and road construction equipment currently available in WA by:

- using asphalt production control data to assess the variability of EME2 during production
- analysing in situ air void contents and checking the level of compaction
- monitoring the rolling pattern and recording mix temperatures throughout production and paving

monitoring level control and rideability of the EME2 asphalt pavement.

Working Group meetings involving all parties to the trial (Downer Group, Main Roads, Colas and ARRB) were conducted prior to the trial commencing. Arrangements were also made for a Colas representative (EME2 expert) to oversee the trial and conduct a knowledge transfer (Section 10).

2 THICKNESS DESIGN

2.1 Introduction

The potential application of EME2 asphalt is in thick asphalt structures which are increasingly being used for heavily trafficked roads in Perth. Accordingly, the trial pavement consisted of:

- a wearing course of dense-graded asphalt with a polymer modified binder
- an intermediate course of EME2 asphalt
- crushed limestone subbase
- sand subgrade.

The structural design was determined using two methods, both of which resulted in similar pavement structures:

- Austroads design method (Section 2.2)
- French design method (Section 2.3).

As described in Section 5, the trial was constructed in the right-hand turning lanes from the Tonkin Highway southbound into Kelvin Road, Orange Grove.

The design traffic for the southbound carriageway of the Tonkin Highway used for the pavement design is shown in Table 2.1. This data was provided by Main Roads and reflects the design traffic over 20 years on the through lanes. It is important to note that a 20-year design was adopted as the intersection had been flagged for a possible grade separation in 10–15 years, therefore, adopting a 40-year design would have been excessive. Late in the planning stages, the location of the trial was moved from the through lanes to the turning lanes and the design undertaken was not replicated for the lower traffic.

Table 2.1:	Design traffi	c data: Tonkin	Highway,	southbound	carriageway
------------	---------------	----------------	----------	------------	-------------

Design traffic (ESAs)	SAR5/ESA	SAR7/ESA		
3.8E+7	1.13	1.64		

2.2 Austroads Design Method

2.2.1 Characterisation of Asphalt Wearing Course

Presumptive values design modulus for the size 14 mm, A15E intersection mix were adopted in accordance with Main Roads *Engineering Road Note 9* (ERN9) (Main Roads 2013c) and the Austroads *Guide to Pavement Technology* (AGPT) *Part 2: Pavement Structural Design* (Austroads 2012).

For size 14 mm asphalt with Class C320 binder, the indirect tensile test (ITT) modulus of a typical laboratory-manufactured sample under standard test conditions and 5% air voids is 5000 MPa (Table 6.13 of Austroads 2012). The ITT modulus of a size 14 mm asphalt with type A15E polymer modified binder was estimated by multiplying the modulus of the C320 by an adjustment factor of 0.75 (Table 6.12 of Austroads 2012).

ERN9 (Main Roads 2013c) specifies that the in situ air voids and binder volume for size 14 mm intersection mixes should be at least 8.8% and 10.3% respectively, as indicated in Table 2.2.

To determine the design modulus of the wearing course, the presumptive ITT modulus (3750 MPa), was adjusted:

- from the measurement temperature (25 °C) to the weighted mean annual pavement temperature (WMAPT) for Perth (29 °C)
- from the ITT rise time of 40 ms to the heavy vehicle design speed (10 km/h because the location of the trial was near a signalised intersection)
- from the 5% air voids to a design air voids of 8.8%.

As listed in Table 2.2, the design modulus was determined to be 1000 MPa, the minimum allowable modulus using the Austroads (2012) design method.

Table 2.2: Design modulus determination: 14 mm intersection mix A15E

		Labo	oratory va	alues					n situ des	ign values		
Asphalt mix	ITT (MPa)	PMB factor	Air voids (%)	Temp. (°C)	Rise time (ms)	Air void V _{air} (%)	Binder volume V _{bit} (%)	WMAPT (°C)	HV design speed (km/h)	Calculated modulus (MPa)	Design modulus (MPa)	Parameter k
14 mm intersection mix (A15E)	5000	0.75	5	25	40	8.8	10.3	29	10	914	1000	5695

2.2.2 Characterisation of Asphalt Intermediate and Basecourse Layers

As there is no published guidance for the modulus of asphalt mixes with EME2 in either the Main Roads or Austroads guides, the Queensland Department of Transport and Main Roads (TMR) *Technical Note TN142* (TMR 2015a) was used to determine a design modulus.

The design moduli for an EME2 base asphalt at the WMAPT for Brisbane (32°C) are listed in Table 2.3. The design moduli at the WMAPT for Perth (29°C) were then calculated using Equation 1.

$$\frac{Modulus \ at \ WMAPT}{Modulus \ at \ 32^{\circ}C} = e^{-0.08(WMAPT-32)}$$
1

where

Modulus at WMAPT = design modulus for Perth

Modulus at 32 °C = design modulus for Queensland as per TN142

WMAPT = weighted mean annual pavement temperature (Perth = 29 °C)

Asphalt mix	Pindor type	Volume of		Asphalt mod	lulus at heavy ve	hicle operating	speed (MPa)
	Binder type	binder (%)	WWAPT (*C)	10 km/h	30 km/h	50 km/h	80 km/h
EME2 asphalt	EME binder	40 F	32	2000	3000	3600	4200
base	(15/25 pen)	13.5	29	2500	3800	4500	5300

Table 2.3: Presumptive values for elastic characterisation of EME2 at WMAPT 32 °C and 29 °C

Design values for WMAPT 29 °C have been rounded down.

2.2.3 Thickness Design

To calculate the design thickness, the following design inputs were used:

- characteristics of the asphalt mix (Table 2.2 and Table 2.3)
- modulus of the crushed limestone subbase and sand subgrade modulus in accordance with Main Roads (2013c)
- design traffic loading as described in Section 2.1.

For a subbase design modulus of 150 MPa and the design traffic, the cumulative damage factor (CDF) was determined using CIRCLY (Table 2.4). The final design pavement designed for through lanes in the EME2 trial was adopted for the turning lanes shown in Figure 2.1. It is important to note that the wearing course thickness was increased from 40 mm to 50 mm for levelling purposes as there was no 14 mm intermediate course for level control and to address the mix placement directly on top of the EME2 layers.

Table 2.4: Pavement design details: Tonkin Highway, southbound (10 km/h)

Material type	Modelled thickness (mm)	Design modulus (MPa)	Volume of binder (%)	Parameter k	CDF
Size 14 mm intersection mix (A15E)	50	1000	10.3	5695	
Size 14 mm EME2 mix	210	2500	13.5	5228	6.85E-01
Crushed limestone subbase	150	150	N/A	N/A	
Sand subgrade CBR 12%	Semi-infinite	120	N/A	N/A	1.67E-03
Asphalt thickness	260				

Figure 2.1: EME2 trial pavement thickness design

Source: ARRB.

2.3 French Pavement Design

The trial pavement structure was checked using the French mechanistic procedure in accordance with NF P 98-086 (AFNOR 2011). The pavement response was calculated using the software package ALIZÉ and the modulus values were selected based on the WMAPT for Perth (29 °C). The design modulus value for the EME2 mix was adopted from the presumptive modulus values presented in the Laboratoire Central des Ponts et Chaussées *French Design Manual for Pavement Structures* (LCPC 1997), which is in line with the material library of the software package ALIZÉ. The temperature dependency of the different asphalt types is presented in Figure 2.2.

Figure 2.2: Temperature dependency of different asphalt types (complex modulus at 10 Hz, 2-point bending)

Note: GB = 'grave-bitume' (road base asphalt), class 1 (3.5% bitumen, 0/20 grading), class 2 (4.2% bitumen, 0/14 grading), class 3 (4.5% bitumen, 0/14 grading) and BBSG = 'béton bitumineux semi-grenu' (semi-coarse asphalt), 0/14 grading Source: Laboratoire Central des Ponts et Chaussées (1997).

The asphalt mix design parameters and assumptions made are shown in Table 2.5. The calculation of the allowable strains using the French pavement design method should consider the following:

- the design fatigue properties were calculated according to NF P 98-086 (AFNOR 2011)
- the minimum mix performance requirements were taken into account, i.e. 14 000 MPa modulus at 15 °C, 10 Hz and 130 με at 10 °C, 25 Hz.

Table 2.5:	Design input	t for the Australian	design proced	ure based upon	French mechanistic	procedure
	~ .		U U			

Asphalt type	Design modulus (MPa)
BBSG (similar to 14 mm intersection mix)	1250(1)
EME2	6400 ⁽¹⁾
Crushed limestone subbase	150
Sand subgrade CBR 10%	100

1. Refer to Figure 2.2

It should be noted that the Australian and French pavement design methods cannot be directly compared. Although they both utilise the mechanistic procedure, the amplitude of traffic loadings, shift factors, reliability factors and the fatigue properties are determined using separate methods. The major differences in the design procedures are shown in Table 2.6.

The pavement designs using the French method for a range of EME2 asphalt thicknesses are summarised in Table 2.7. It can be seen that the pavement consists of 230 mm of EME2 overlaid by 40 mm thick wearing course (excluding construction tolerances). This is similar to the thickness derived using the Australian procedure (220 mm + 10 mm tolerance = 230 mm).

Table 2.6:	Comparison	of the French	and Australian	pavement design input
------------	------------	---------------	----------------	-----------------------

Input	French method Australian met		
Number of vehicles	Similar		
Design traffic (NDT)	N/A	Required	
Traffic load in equivalent standard axles $(NE)_{pavement}$	Required	N/A	
Equivalent standard axles (ESA)	N/A	Required	
Material parameters	Different		
Fatigue equations Different		fferent	
Pavement design outcome	Ven	/ similar	

Source: ARRB.

Table 2.7: Tonkin Highway EME2 trial, pavement design according to French method NF P 98-086/ALIZE

	Madulua	Trial thickness 1		Trial thickness 2		Trial thickness 3		Allowable
Material type	(MPa)	Thickness (mm)	Calculated strain (με)	Thickness (mm)	Calculated strain (με)	Thickness (mm)	Calculated strain (με)	strain (micro strain)
BBSG	1250	40	N/A	40	N/A	40	N/A	N/A
EME2	6400	210	72.6(1)	220	68.3 ⁽¹⁾	230	64.3(2)	67.4
Crushed rock	150	150	N/A	150	N/A	150	N/A	N/A
Sand subgrade	100	N/A	194.4	N/A	182.2	N/A	171.2	255.0

Calculated strain is greater than allowable strain.
 Calculated strain is lower than allowable strain.

Source: ARRB.

The allowable strains calculated according to the French pavement design method are summarised in Table 2.8.

Pavement structure	Property	EME2 allowable strain calculation input
Formation support	MPa	100
	Annual average daily traffic (AADT) (traffic class TS-)	1 690
	Design period - p (year)	40
	Annual growth rate (τ) (%)	2.6
Traffic	Cumulative growth factor over design period (C)	69
	Mean traffic aggressiveness (CAM) _{pavement}	0.8
	NE pavement	33 933 920
	Number of heavy vehicles over design period (NPL)	42 417 400
	Medium-heavy traffic	0.012
	CAM (subgrade)	0.8
Allowable subgrade vertical strain	NE	33 933 920
	Exponent	-0.222
	ε vertical	255 E-06
	T equivalent	29
	E (10 °C, 10 Hz) (MPa)	17 000
	E (32 °C, 10 Hz) (MPa)	6 400
	ε ₆ (10 °C, 25 Hz)	130E-6
	ε ₆ (29 °C, 10 Hz)	105E-6
	Pavement thickness (cm)	26
	Formation support (MPa)	100
	Risk level associated with traffic class (%)	1
Allowable asphalt herizontal strain	Variable associated with risk (u)	-2.326
Anowable asphalt nonzontal strain	Slope of the fatigue line (b)	-0.2
	Coefficient c	0.02
	Standard deviation of pavement thickness (S _h)	2.5
	Standard deviation of the fatigue test (S_N)	0.25
	Standard deviation at distribution of logN at failure (δ)	0.354
	Coefficient kr	0.685
	Coefficient kc	1.0
	Coefficient ks	0.94
	€t, allow	67.4 E-06

Table 2.8:	Pavement thickness	design accordin	a to French met	hod NF P98-086/A	IZE-EME2
10010 2.0.	i avenient thekness	acoign accordin	ig to i renon met		

Source: ARRB.

3 EME2 MIX DESIGN

3.1 Mix Design Requirements

Main Roads required the EME2 mix to comply with the requirements of *Draft Specification 514 High Modulus Asphalt (EME2)* (Main Roads 2016b) and ERN13 (Main Roads 2016c). ERN13 states 'constituent materials nominated in the Australian mix design, developed and finalised in Australia are to be shipped overseas to France for validation and that the testing needs to be performed by a French laboratory accredited for testing by the Comité Français d'Accréditation'.

3.2 Downer Group Laboratory Test Results

The EME2 mix design was developed and tested by Downer Group, in accordance with TMR's *Pilot Specification PSTS107* (TMR 2015b), at their National Research and Development Laboratory in Somerton Victoria, using materials sourced from the Holcim Quarry at Gosnells and binder from SAMI Bitumen Technologies Brisbane. The submitted EME2 mix design and supplementary documentation were reviewed by Main Roads.

The EME2 mix design criteria and the Downer Group test results are presented in Table 3.1 to Table 3.3, whilst Figure 3.1 compares the measured and target particle size distribution (PSD) of the EME2 mix.

Property	Test standard	Units	Limits	Test result
Penetration at 25 °C	AS 2341.12	ри	≥ 15 ≤ 25	15
Softening point	AS 2341.18	°C	≥ 56 ≤ 72	68
Viscosity at 60 °C	AS/NZS 2341.2	Pa.s	≥ 900	10 700
Loss on heating	AS/NZS 2341.10 or AGPT/T103	%	≤ 0.5	0.0
Retained penetration	AS/NZS 2341.10 and AS 2341.12	%	≥ 55	67
Increase in softening point after rolling thin film oven (RTFO) treatment	AS/NZS 2341.10 and AS 2341.18	°C	≤ 8	9
Viscosity at 135 °C	AS/NZS 2341.2, AS 2341.3, AS/NZS 2341.4 or AGPT/T111	Pa.s	≥ 0.6	2.44
Matter insoluble in toluene	AS/NZS 2341.8	% mass	≤ 1.0	1.2
Viscosity at 60 °C after RTFO	AS/NZS 2341.10 and AS/NZS 2341.2	Pas	Report	44 900
Percent increase in viscosity at 60 °C after RTFO test	AS/NZS 2341.10 and AS/NZS 2341.2	%	Report	420

Table 3.1: Properties of EME2 binder

Source: Based on laboratory data from Downer Group.

Property	Test standard	Limit	Test result
Air voids in specimen compacted bygyratory compactor at 100 cycles	AS/NZS 2891.9.3 using a Servopac	≤ 6.0%	3.7%
Stripping potential of asphalt – tensile strength ratio	AGPT/232	≥ 80%	84%
Wheel tracking at 60 °C and 30 000 cycles (60 000 passes)	AGPT/231	≤ 4.0 mm	1.2 mm
Wheel tracking at 60 °C and 5 000 cycles (10 000 passes)	AGPT/231	≤ 2.0 mm	0.8 mm
Minimum flexural stiffness modulus at 50 \pm 3 $\mu\epsilon,$ 15 °C and 10 Hz	AGPT/274	≥ 14 000 MPa	14 964 MPa
Fatigue resistance at 20 °C, 10 Hz and 1 million cycles	AGPT/274	≥ 150 με	163 με
Richness modulus	N/A	≥ 3.4	4.0

Table 3.2: Main Roads draft specification 514 EME2 mix design criteria and test results

Source: Based on Downer Group data.

Based on these tables, it can be concluded that the EME2 mix design met all the Australian and Austroads specification limits, with the exception of:

- increase in softening point after rolling thin film oven (RTFO) result of 9 °C, exceeding limit of 8 °C or less
- percentage by mass insoluble result of 1.2%, exceeding a maximum of 1%.

Due to time constraints associated with the project and the reduced design life of the trial, these values were deemed acceptable for the purposes of the trial. However, complete compliance will be required on future EME2 work.

Binder results from production are discussed in Section 8.7.

Table 3.3:	Design and	target	particle	size	distribution
------------	------------	--------	----------	------	--------------

Particle size distribution AS sieve size (mm)	Combined design grading EME2	Tolerances on percentage by mass passing EME2
19.00	100	100
13.2	97	94–100
9.50	82	75–89
6.70	67	60–74
4.75	52	45–59
2.36	35	30–40
1.18	24	19–29
0.600	17	13–21
0.300	12	8–16
0.150	8	6–11
0.075	5.3	3.8–6.8

Source: Based on laboratory data from Downer Group.

Source: Based on laboratory data from Downer Group.

3.3 French Laboratory Test Results

Downer Group commissioned an independent laboratory, Colas Campus for Science and Techniques (CST) located in France to undertake the mix testing. It included determining the performance and characteristics of the EME2 mix design developed by Downer Group. Table 3.4 through Table 3.6 show binder properties, mix design criteria and PSD of EME2. Figure 3.2 shows the design target PSD graph.

Table 3.4:	Properties of	EME2 binder	tested by	/ European	laboratory
------------	---------------	-------------	-----------	------------	------------

Property	Test method	Limit	Design result	
Penetration at 25 °C (1/10 mm)	EN 1426	15–25 pu	17 pu	
Softening point (T _{R&B}) ° C	EN 1427	55–71 °C	70.2 °C	

Source: Based on Colas CST laboratory data.

Table 3.5:	Specification	properties	of EME2 tested	d by Euro	pean laboratory
------------	---------------	------------	----------------	-----------	-----------------

Property	Test method	Note	Limit	Results
Air voids in specimens compacted by gyratory compactor at 100 gyratory cycles	EN 12697-31		Maximum 6%	3.8%
Water sensitivity	EN 12697-12		Minimum 70%	95%
Wheel tracking at 60 °C and 30 000 cycles (void content 4.8%)	EN 12697-22	Large size device, two slabs	Maximum 7.5%	1.9%
Minimum stiffness modulus at 15 °C & 10 Hz (void content 3.6%)	EN 12697-26 Method A	Two-point bending trapezoidal specimens	Minimum 14 000 MPa	14 632 MPa
Fatigue resistance at 10 °C, 25 Hz & 106 cycles (void Content 3.9%)	EN 12697-24 Method A	Two-point bending, trapezoidal specimens, three strain levels, six specimens for each strain level	Minimum 130 με	145 με

Source: Based on Colas CST laboratory data.

Particle size distribution sieve size (mm)	Combined design grading EME2
20	100
16	100
12.5	97.0
9.5	84.4
8	-
6	-
4.75	52.0
2.36	34.0
1.18	23.6
0.6	17.0
0.3	12.2
0.15	8.6
0.075	5.9

Table 3.6: Design mix particle size distribution: EN 12697-35 by European laboratory

Source: Based on Colas CST laboratory data.

Source: Based on Colas CST laboratory data.

The EME2 results obtained by the Colas CST laboratory in France validated the design values obtained by Downer Group and complied with Main Roads requirements stated in ERN13 (Main Roads 2016c).

3.4 Aggregate Requirements

The EME2 mix aggregates and fillers were required to conform with Main Roads *Draft Specification 514* (2016b) and *Specification 511: Materials for Bituminous Treatments* (Main Roads 2015b).

The specification and test results are shown in Table 3.7 and Table 3.8. Note that natural sand should not be used in the design or manufacture of EME2 asphalt mixes.

Table 3.7: Aggregates specifications

Test	Requirement	Test Method	Results		
Los Angeles Abrasion value	35% maximum	WA 220.1	17.7%		
Flakiness Index	25% maximum	WA 216.1	10 mm 16%; 14 mm 18%		
Water absorption	2% maximum	AS 1141.6.1	0.4%		
Wet strength	100 kN minimum	AS 1141.22	275 kN		
Wet/dry strength variation	35% maximum	AS1141.22	4%		
Degradation Factor	50% minimum	AS 1141.25.2	82%		
Petrographic examination	Statement of suitability for	Statement of suitability for use as an asphalt aggregate			

Source: Based on Downer Group laboratory data.

Table 3.8: Filler specifications

Test method	Unit	Droporty	Minera	al filler	Populto	
Test method	Unit	Froperty	Min	Max	results	
AS/NZS 1141.17	%	Voids in dry compacted filler	28	45	40	
EN 13179–1: 2000 and AS 2341.18	°C	Delta ring and ball	8	16	14.5	

Source: Based on laboratory data from Downer Group (Appendix N).

4 DOWNER GROUP YARD PRE-TRIAL

On 12 April 2017, Downer Group placed approximately 100 tonnes of EME2 at the Holcim quarry stockpile area adjacent to Downer Group's asphalt plant yard in Gosnells as part of a production and placement pre-trial of EME2 asphalt mix for the Main Roads Tonkin Highway trial.

4.1 **Pavement Composition of Pre-trial**

The pavement structure for the pre-trial comprised a rock base with a single layer of EME2 asphalt placed directly on top. The target thickness for the EME2 layer was 105 mm, placed in one layer on top of the subbase, placed in two paving runs.

4.2 **Production and Construction**

The Downer Group plant maintained a production rate of 100 tonnes per hour (tph) for the EME2, with a target production temperature of 185–190 °C. There were no noted issues with the production of the EME2 for the pre-trial.

4.2.1 Paving

Asphalt paving commenced at approximately 8:00 pm on 12 April 2017 during a cool night, and took place in a northbound direction in one layer. Downer Group utilised one paver (CAT AP65D) for construction, conforming to requirements in Main Roads *Draft Specification 514* (Main Roads 2016b).

4.2.2 Compaction

The compaction of the EME2 mat in the pre-trial was performed using a 9 tonne vibrating steel-drum tandem roller, a 9.2 tonne pneumatic multi-tyred roller and a 7 tonne steel-drum roller. The rolling pattern may be described in the following manner:

- 1. two static and three vibratory passes of a 9 tonne steel-drum roller
- 2. six passes of a 9.2 tonne pneumatic multi-tyred roller
- 3. four static back rolling passes using a 7 tonne steel-drum roller.

It is important to note that the multi-tyred roller did not commence compaction of the mat until the 9 tonne steel-drum roller had completed its passes due to concerns regarding over-compaction. Additionally, temperature monitoring was conducted during paving showing that surface temperatures of the mix for each stage of the compaction were approximately as follows:

- directly behind the paver 140–150 °C
- 9.0 tonne static smooth steel-drum roller 110–130 °C (commencing directly behind paver for approximately 20 minutes)
- 9.2 tonne pneumatic multi-tyred roller 100–120 °C (commencing directly behind vibratory steel-drum roller for approximately 10 minutes)
- 7 tonne static smooth steel-drum back roller 90–110 °C (commencing directly behind the multi-tyred roller for approximately 10 minutes).

It was observed during the pre-trial that the EME2 asphalt held its temperature more than a conventional mix, with surface temperatures of up to 80 °C approximately one hour after the mix had left the paver.

4.3 Quality Control

Throughout the pre-trial, production testing included material sampling, in situ temperature monitoring and density measurements using the pavement quality indicator (PQI). Post-production testing was also conducted by Main Roads to evaluate the air voids, tensile strength ratio, modulus and rut performance (using the Hamburg wheel tracker). The sampling and testing plan is summarised in Appendix A.

Notably, of the tests conducted for the pre-trial the only non-conformances were related to the softening point of the binder. The pre-trial binder test results are discussed in Section 8.7, with the performance tests discussed in the relevant sections of Section 9. The reports for each of the tests conducted for the pre-trial are presented in Appendix B.

4.4 Findings and Recommendations

The purpose of the Downer Group yard pre-trial was to document the production and placement of EME2 asphalt mix using the plant and methods intended for use on the Tonkin Highway trial and implement any findings, to ensure best practice is conducted on the main trial. The findings show that the EME2 mix was produced, placed and compacted without any major issues.

Recommendations relative to the Tonkin Highway trial include:

- reducing the target production temperature from 185–190 °C to 175–185 °C to reduce the risk of overheating the mix
- ensuring the trial is continually monitored from commencement
- ensuring the production and construction crews are aware of the differences between EME2 and typical dense graded asphalt (DGA) intermediate course mixtures.

5 TONKIN HIGHWAY TRIAL DETAILS

5.1 Location

The EME2 mix was placed on the new southbound right-turn lanes from Tonkin Highway onto Kelvin Road accessing a major industrial area. The geographic coordinates of the trial section were: 32°01'46.4"S 116°00'22.1"E. An aerial view of the trial site is presented in Figure 5.1Error! **Reference source not found.** The paving lane closest to the median was designated LR1 while the outer lane was designated LR2 in accordance with Main Roads practice.

Figure 5.1: Map of the trial

Source Google maps (2017), Western Australia, Map data, Google, WA, Australia.

5.2 Construction of Subbase

Construction of the subbase working platform took place during April 2017. Photos of the construction of the crushed limestone subbase are shown in Figure 5.2 through to Figure 5.5. The limestone complied with Main Roads *Specification 501: Pavements* (Main Roads 2017a). Additionally, there was no rain during or in the week leading up to the trial.

Figure 5.2: Construction of subbase

Figure 5.4: Thickness of subbase

Source: ARRB.

The finished surface of the subbase was completed on 24 April 2017. The condition of the surface before the EME2 asphalt was placed, is shown in Figure 5.6 and Figure 5.7. Due to time constraints, a prime was not applied to the subbase because the minimum curing time could not be met before construction was due to commence.

Nuclear density testing by the contractor on both the subgrade and subbase confirmed compliance with Main Roads *Specification 501*. Dryback testing was also performed on the subbase and complied. The test results are provided in Appendix D and Appendix E.

Figure 5.6: Visual inspection of subbase

Figure 5.7: Subbase ready for asphalt placement

Source: ARRB.

The surface levels at any point were required to be within +5 mm and –35 mm of the target subbase level. The data in Figure 5.8 shows that the measured surface levels conformed to these requirements. Apart from one small area in LR1, the surface was homogenous and tightly bound.

Source: Data supplied by Main Roads.

- 19 -

6 **PRODUCTION OF EME2**

6.1 Asphalt Plant

Downer Group used a 140 tonne per hour continuous drum plant to produce the EME2. The location of the Downer Group plant is shown in Figure 6.1 and the Downer Group plant used for the trial is shown in Figure 6.2.

Figure 6.1: Location of Downer Group asphalt plant

Source: Google maps (2017), Western Australia, Map data, Google, WA, Australia.

Source: ARRB.

The plant was pre-heated and the binder flushed out before commencement of production to ensure a constant temperature. A total of 998 tonnes of the EME2 mix was produced, of which 507 tonnes were produced on 26 April 2017 and the subsequent 491 tonnes on 27 April 2017. The production rate was 100 tph with a target production temperature of between 175 °C and 185 °C. Figure 6.3 shows a typical computer screen showing production tonnes per hour and temperature.

Figure 6.3: Computer screen indicating production tonnes per hour and temperature

Source: ARRB.

6.2 Materials Management

6.2.1 Aggregate

Attention was placed on the quality of the aggregate, including stockpile grading checks. The mix had a high percentage of crusher dust. No natural sand or hydrated lime was used.

6.2.2 Binder

The EME2 binder was transported from Queensland to Downer Group Gosnells plant in road tankers (see Figure 6.4) where the EME2 binder was then pumped directly from the road tanker to the asphalt plant. Figure 6.5 shows the tanker bitumen line connected to the plant. There were no issues during the process – the only interruption was the delays during changeover of the tankers.

To maintain binder flow, the temperature of the tanker was maintained at 185 °C. Figure 6.6 shows the tanker temperature during production.

6.2.3 Additives

The adhesion agent Redicote BE was added to the binder at 0.3% of binder by mass in accordance with Main Roads *Specification 511* (Main Roads 2015b). The Redicote BE was added to the tanker and mixed prior to direct feed to the plant.

Figure 6.4: EME2 road tanker

Figure 6.5: EME2 being pumped to the plant

Figure 6.6: Monitoring of tank temperature

Source: ARRB.

6.3 Process Control

The items included in the process control were as follows:

Aggregates

- calibration of cold feed bins
- percentage of crusher dust
- baghouse fines quantities required checking
- blend sheets reviewed and checked
- plant trials to check grading/binder contents
- plant scales calibrated.

Bitumen

- tank selection
- circulation
- temperature during mixing
- in-line samples taken during production.

Samples were taken at the SAMI Bitumen Technologies Brisbane depot during transfer to the road tanker and at the Downer Group asphalt plant in supply line to plant (Figure 6.7 and Figure 6.8) respectively. The test results are presented in Section 8.7.

Figure 6.7: EME2 binder sampling

Source: ARRB.

7 ASPHALT CONSTRUCTION

7.1 Transportation of the EME2 Asphalt Mix

The haul distance from the plant to the trial site was less than 10 kilometres. However, there were still some significant construction delays. The time between haul loads on 26 April 2017 ranged between 7 minutes and 28 minutes for the paving of each lane, with an average of 14 minutes. The greater wait times were primarily due to the lack of delivery trucks. It is important to note that there was a 55-minute break between the paving of LR2 and LR1 on 26 April 2017.

On 27 April 2017 additional trucks were provisioned for delivery, however, issues on site and with the EME2 quantities led to an increase in the range of wait times between 8 minutes and 71 minutes. The 71-minute wait may be attributed to the paving of a small section of LR1 Lift 1 (as discussed in Section 7.2) before moving onto the paving of Lift 2. A malfunction of the paver at the commencement of Lift 2 then led to a 25 minute delay before the rest of the run was carried out relatively smoothly. The other significant delay was a 43 minute wait time, caused by a shortage of EME2 asphalt. There was also a 45 minute break between the paving of LR2 and LR1 on 27 April 2017.

A photo of the EME2 mix being delivered to the site is shown in Figure 7.1.

The delivery temperature ranged between 162 °C and 180 °C, resulting in high laying temperatures, due to minimal heat loss during transportation. The truck delivery times and mix temperatures for 26 April 2017 and 27 April 2017 are reported in Table 7.1 and Table 7.2 respectively.

Figure 7.1: EME2 asphalt being delivered

Source: ARRB.

Table 7.1:	Truck delivery	y times and mix	temperatures	(26/4/17)
------------	----------------	-----------------	--------------	-----------

Docket number	Time of arrival at plant	Time mix unloaded into paver	Time between haul loads (minutes)	Mix temperature at plant (°C)	Mix temperature at site (°C)	Tonnes delivered	Weather conditions	Ambient temperature (°C)
080881	10:26 am	11:21 am		169	168	24.46	Clear	20

Docket number	Time of arrival at plant	Time mix unloaded into paver	Time between haul loads (minutes)	Mix temperature at plant (°C)	Mix temperature at site (°C)	Tonnes delivered	Weather conditions	Ambient temperature (°C)
080882	10:48 am	11:42 am	21	171	170	25.92	Clear	20
080883	10:58 am	11:49 am	7	174	172	24.81	Clear	21
0n0884	11:24 am	11:59 am	10	163	162	27.29	Clear	22
080885	11:45 am	12:15 pm	16	175	174	25.77	Clear	22
080886	12:11 am	12:43 pm	28	177	177	24.46	Clear	23
080887	12:24 pm	12:53 pm	10	171	170	26.14	Clear	24
080888	12:39 pm	1:13 pm	20	170	170	24.70	Clear	24
080889	1:40 pm	2:08 pm	55*	172	171	27.37	Clear	25
080890	2:00 pm	2:28 pm	20	182	180	24.00	Clear	25
080891	2:22 pm	2:45 pm	17	174	173	25.31	Clear	25
080892	2:38 pm	3:00 pm	15	171	170	24.57	Clear	24
080893	2:46 pm	3:07 pm	7	173	173	25.73	Clear	24
080894	2:55 pm	3:20 pm	13	175	174	24.81	Clear	24
080895	3:07 pm	3:30 pm	10	183	180	23.83	Clear	24
080896	3:22 pm	3:43 pm	13	175	173	27.33	Clear	23
080897	3:33 pm	4:00 pm	17	179	178	23.87	Clear	23
080898	3:51 pm	4:15 pm	13	174	170	25.92	Clear	23
080899	4:01 pm	4:27 pm	14	179	177	24.56	Clear	22
080900	4:14 pm	4:34 pm	7	177	176	25.80	Clear	22
		Total	5.22 hrs			Total: 506.65 t		

*Note: Transition from LR2 to LR1.

Source: Based on data from Downer Group, Main Roads and ARRB.

Table 7.2: Truck delivery times and mix temperatures (27/4/17)

Docket number	Time of arrival at plant	Time mix unloaded into paver	Time between haul loads (minutes)	Mix temperature at plant (°C)	Mix temperature at site (°C)	Tonnes Delivered	Weather conditions	Ambient temperature (°C)
080906	8:05 am	9:17 am		183	177	25.38	Clear	19
080908	8:21 am	10:35 am	71	173	173	26.21	Clear	19
	8:44 am	11:00 am	25			24.93	Clear	20
080910	9:23 am	11:08 am	8	179	177	24.10	Clear	22
080911	9:38 am	11:20 am	12	173	166	24.20	Clear	22
080912	10:12 am	11.29 am	9	170	170	25.10	Clear	23
080914	10:21 am	11:39 am	10	180	172	22.60	Clear	24
080916	10:30 am	11:47 am	8	180	175	25.35	Clear	24
080918	11:13 am	12:00 pm	13	170	169	25.15	Clear	24
080919	11:35 am	12:45 pm	45 ¹	179	180	25.20	Clear	25
080920	11:50 pm	1:12 pm	27	176	177	24.86	Clear	25
080922	11:59 am	1:25 pm	13	173	174	24.29	Clear	25
080923	12:11 pm	1:36 pm	11	173	172	24.33	Clear	25

Docket number	Time of arrival at plant	Time mix unloaded into paver	Time between haul loads (minutes)	Mix temperature at plant (°C)	Mix temperature at site (°C)	Tonnes Delivered	Weather conditions	Ambient temperature (°C)
080924	12:21 pm	1:45 pm	9	173	165	22.76	Clear	25
	12:30 pm	1:53 pm	8			25.49	Clear	
080927	12:44 pm	14:02 pm	9	173	173	25.02	Clear	25
080928	??	14:13 pm	11	181	172	25.51	Clear	26
080929	2:40 pm	14:30 pm	17	173	166	19.17	Clear	26
080931	2:47 pm	15:13 pm	43 ²	178	173	26.32	Clear	25
080932	3:04 pm	15:24 pm	11	177	172	25.13	Clear	25
		Total	6.00 hrs			Total: 491.10 t		

1 Transition from LR2 to LR1.

2 Shortage of EME2 mix.

Source: Based on data from Downer Group, Main Roads and ARRB.

7.2 Asphalt Paving

Placement of the EME2 asphalt took place during fine and warm weather between Wednesday 26 and Thursday 27 April 2017. Paving run details were as follows:

- 1. two lanes each 3.5 m wide (approximately) see Figure 7.2 for road lanes
- 2. length approximately 223 m
- 3. for each lane, two 105 mm thick layers of EME2 mix were placed to provide a total compacted thickness of 210 mm.
 - 105 mm thick EME2 paved in LR2 Lift 1 in southbound direction
 - 105 mm thick EME2 paved in LR1 Lift 1 in northbound direction
 - 105 mm thick EME2 paved in LR2 Lift 2 in southbound direction
 - 105 mm thick EME2 paved in LR1 Lift 2 in northbound direction.

Figure 7.2: Limestone subbase marked ready for EME2 mix placement

Source: ARRB.

Downer Group used one paver (CAT AP65D) for construction, which complied with Main Roads *Draft Specification 514* (Main Roads 2016b) Figure 7.3. It is important to note that there were variations in the truck delivery times, which resulted in the paver stopping and starting two to three times per layer. Figure 7.4 show the paver during the placement of EME2 mix.

Figure 7.3: Paver CAT AP65D

Figure 7.4: Paver operation

Source: ARRB.

Paving took place in a southbound direction on 26 April 2017. The first delivery truck arrived at 11:10 am and paving of LR2 Lift 1 commenced at approximately 11:20 am (see Figure 7.5). Compaction of LR2 Lift 1 was completed by 2:00 pm. Before starting LR1, the longitudinal edge of the previous laid mix was cut back. A cutter wheel mounted to the roller cut away completely the uncompacted edge (up to 75 mm width) and the excess asphalt was removed before paving (see Figure 7.6).

Figure 7.5: Paving operation southbound

Figure 7.6: Roller cutting edge

Source: ARRB.

Paving of LR1 Lift 1 commenced at approximately 2:20 pm (see Figure 7.7). Compaction stopped at approximately 5:30 pm with a 10 m long section left to be paved on the morning of 27 April 2017.

Figure 7.7: Paving of Layer 1 of LR1

Source: ARRB.

After the completion of the placement of LR1 Lift 1, a tack coat was applied to the surface of the EME2 in both lanes at the rate of 0.6 L/m^2 . The purpose of the tack coat was to aid with the application and bond with the second EME2 layer in accordance with Main Roads *Draft Specification 514* (Main Roads 2016b). Lift 2 was not placed until the emulsion had broken and the water had substantially evaporated. Figure 7.8 shows the application of the tack to the surface.

Paving of LR2 Lift 2 commenced at 9:30 am and was completed by 12:00 pm, with compaction still to be completed. Paving of LR1 Lift 2 commenced at 1:00 pm and was completed by 3:45 pm. However, the shortage of EME2 asphalt led to a significant delay of 43 minutes between loads in the paver in the last run. Figure 7.9 shows the Lift 2 paving operation.

Due to a shortage of the EME2 asphalt, paving of the final 15 m (approximately) of LR1 Lift 1 was completed with size 20 mm C320 dense-graded asphalt.

Figure 7.8: Application of tack coat

Source: ARRB.

7.3 Compaction

7.3.1 Plant

Initial rolling was performed immediately behind the asphalt paver with a vibrating smooth-drum tandem roller (9 tonnes, series HD / Series H 181). No tearing or cracking was observed (see Figure 7.10). A multi-tyred roller (GRW280) followed immediately behind the vibrating roller, ensuring the time gap between drum roller compaction and multi-tyred roller compaction was minimal (see Figure 7.11 and Figure 7.12). Static rolling using a tandem 7 tonne roller was adopted to finish the surface and remove multi-tyred roller marks (see Figure 7.13). Temperature monitoring was conducted during paving (Section 7.5), showing that the surface temperatures of the EME2 asphalt varied during construction in the range of 100 °C and 155 °C, as discussed in Section 7.5.1. Similarly, compaction times varied during paving and was generally carried out until the desired levels of compaction were achieved.

Figure 7.10: Vibrating smooth drum roller

Figure 7.11: Multi tyred roller behind the vibrating roller

Source: ARRB.

Figure 7.12: Multi-tyred roller behind the vibrating roller

Source: ARRB.

7.3.2 Rolling Pattern

The following rolling pattern was adopted for the EME2 mix:

- 1. compaction commenced on the open edge with 300 mm overhang of the roller, starting with one pass static and followed by a vibratory second pass 150 mm from the edge
- 2. two static and three vibratory passes of a 9 tonne steel-drum roller
- 3. six passes of a 9.2 tonne pneumatic multi-tyred roller
- 4. four static back rolling passes using 7 tonne steel-drum roller.

It is important to note that the rolling pattern was used as a guideline and adjustments were made as appropriate on site to achieve the desired levels of compaction as it is difficult to follow a predefined number of passes on site. Compaction using the multi-tyred roller was typically conducted until small patches of bleeding were visible on the surface. Furthermore, the rate of production and the number of trucks allotted to the trial led to the paver stopping for periods of up to 20 minutes, thus altering the compaction train in the following ways:

- plant operators continued the compaction procedure until the paver resumed operation, which may lead to an excess in the required number of passes
- plant operators could not reach the asphalt closest to the paver, which may lead to areas containing high voids that may be difficult to reduce once the paver resumed operation.

7.4 Joint Construction

The Lift1 joints between LR1 and LR2 were constructed using standard Main Roads practice where the unconfined edge is cut back using a cutter wheel mounted on a roller to form a vertical face (up to 75 mm width), excess material removed (Figure 7.14) and the edge is then pressed (Figure 7.15). Typically, joint overlapping is completed by raking and flicking the unconfined edge and this was adopted for construction of the Lift 1 joint. However, following paving of Lift 1, nuclear gauge density results indicated that the percentage of air voids was relatively high in the joint (see Figure 8.15) and as a result, the joint overlapping methodology was altered for the construction of the Lift 2 joint.

The joint overlapping for Lift 2 was completed using three methodologies: typical practice (same as Lift 1), overlapping of the unconfined edge with large stones removed by hand raking and overlapping of the unconfined edge without the removal of large stones. The overlapping on the joint using the paver is displayed in Figure 7.16 with the finished joint presented in Figure 7.17.

Figure 7.14: Cut edge with excess material

Source: ARRB.

Figure 7.16: Joint overlapping from paver

Source: ARRB.

7.5 Temperature Monitoring of EME2 Mix

Due to the viscoelastic nature of bituminous materials, temperature has a significant influence on asphalt workability and long-term performance. Hence, temperature monitoring was performed throughout the trial to examine possible segregation during production, placement and compaction. It allowed for the location of cold areas and/or sections of lower temperatures to be identified, which could minimise premature pavement distresses such as ravelling and cracking resulting from irregular temperature distribution.

The temperature of the asphalt during compaction was all higher than 145 °C resulting in good workability and achievement of the desired density. The results of the compaction testing are discussed in Section 8.2.

The mix temperature was recorded at the commencement of production and was continually monitored throughout the entire construction process. Temperature monitoring was carried out using a digital thermometer with a probe, a Testo 830-T1 infrared thermometer and a Testo model 875i thermal imager (see Figure 7.18 through to Figure 7.21).

Figure 7.15: Roller pressing pavement edge

Figure 7.17: Finished Layer 2 joint

Figure 7.18: Mat temperature with thermal imager

Source: ARRB.

Figure 7.20: EME2 on hopper between haul loads

Figure 7.21: Surface temperature monitoring

Figure 7.19: Mat compactor with digital thermometer

Source: ARRB.

7.5.1 Temperatures Monitoring during Paving using Thermography

Delivery temperatures

The variations in temperature of the delivered mix are shown in Table 7.1 and Table 7.2. The thermal imager temperature of the EME2 mix in a delivery truck is displayed in Figure 7.22 whilst the temperature behind the paver is shown in Figure 7.23.

Paving temperatures

Temperatures between 160 °C and 170 °C were maintained when the mix was unloaded to the paver. Thermal images showed laydown temperatures of no less than 140 °C, resulting in a uniform surface temperature. No significant temperature variation was observed during construction (see Figure 7.24 and Figure 7.25).

Figure 7.22: Thermal image of the mix in the truck

Figure 7.23: Thermal image behind the paver

Source: ARRB.

Figure 7.24: Temperature no less than 140 °C

Figure 7.25: Temperature between 160 °C and 170 °C

Source: ARRB.

Compaction temperatures

Surface temperatures were between 100 °C and 155 °C during the entire compaction process. Surface temperatures nearing completion of the rolling pattern are shown in Figure 7.26 and Figure 7.27. Although surface temperatures of the mat varied during the compaction operation, the general surface temperatures of the mat when each item of plant was applied was observed to be approximately:

- directly behind the paver 140–155 °C
- 9.0 tonne static smooth steel-drum roller 120–135 °C (commencing directly behind paver for approximately 20 minutes)
- 9.2 tonne pneumatic multi-tyred roller 110–130 °C (commencing directly behind vibratory steel-drum roller for approximately 10 minutes)
- 7 tonne static smooth steel-drum back roller 100–120 °C (commencing directly behind the multi-tyred roller for approximately 15 minutes).

Figure 7.26: Monitoring mat temperature

Source: ARRB.

Temperatures near construction joints

The temperature of the material forming the adjacent faces of a longitudinal construction joint has a significant impact on the adhesion and density and this influences the long-term performance of the asphalt. During the trial, nuclear gauge density results showed a high percentage of air voids in the vicinity of joints. Figure 7.28 through to Figure 7.31 clearly show examples of variation in surface temperatures near longitudinal joints. The temperature variation at the interface of the hot and warm longitudinal joint shows the influence the freshly paved asphalt layer has on the warm asphalt.

Source: ARRB.

Figure 7.27: Mat temperature during roller operation

Figure 7.30: Variation temperature

Figure 7.31: Details of variation temperature

Source: ARRB.

7.6 Surface Levels of the EME2 Mix

The surface levels of the EME2 base at any point were required to be within +5 mm and -10 mm of the specified level in accordance with *Draft Specification 514* (Main Roads 2016b). Figure 7.32 to Figure 7.35 show the levels measured on the top of Lift 1 and Lift 2 of the EME2 mix. Level control is difficult to achieve on the first layer above the subbase and as expected, a better level control was obtained on the top of Lift 2. Therefore, it is important to have 5 m surveys for all layers. There was no data available to allow a comparison with conventional dense-asphalt mixes.

The range of the measured levels shows that there is a significant variation for both lanes in Lift 1 and Lift 2, however, the non-conformances are generally higher in Lift 1 and on the left side of each lane. The difficulty achieving levels may be attributed to the degree of variance with the surface levels of the subbase (Figure 5.8) and/or the contractor's lack of experience regarding best practice for EME2 asphalt. It is important to note that the left side of each run (i.e. LR1 L and LR2 L) was paved next to the confined edge, and this may have impacted the height management. The results from the survey levels are summarised in Table 7.3.

Lift	Lane designation	Range of survey levels (mm)	Non-conformances (%)	Mean (%)
1	LR1 L	-14 to +28	50	42
	LR1 R	-12 to +33	33	
	LR2 L	+1 to +52	87	63
	LR2 R	-14 to +16	39	
2	LR1 L	-14 to +17	46	30
	LR1 R	-13 to +23	14	
	LR2 L	-10 to +14	48	50
	LR2 R	–17 to +37	52	

Source: Data supplied by Main Roads.

Source: Data supplied by Main Roads.

Source: Data supplied by Main Roads.

Source: Data supplied by Main Roads.

As shown in Figure 7.36 and Figure 7.37 the EME2 surface had a good visual appearance and showed a tight finish, with some sections showing flush patches on the surface, as presented in Figure 7.38.

Source: ARRB.

Figure 7.37: Finished surface

Source: ARRB.

Figure 7.38: Surface flush patches

7.8 Wearing Course

The 50 mm thick, size 14 mm intersection mix wearing course was constructed one week after the EME2 was placed. Figure 7.39 shows the finished surface of the wearing course whilst the mix and compaction compliance results are reported in Appendix P.

Source: ARRB.

8 CONFORMANCE AND RESEARCH TESTING

8.1 Introduction

An intensive program of sampling and testing of the binder, filler and the mix was performed by staff from Boral, Main Roads, Downer Group, Queensland TMR and ARRB. Sampling from the plant and sample distribution are shown in Figure 8.1 and Figure 8.2 respectively. Appendix A presents Main Roads sampling and testing plan.

Figure 8.1: Sampling of EME2 from plant

Figure 8.2: Distribution of the samples

Source: ARRB.

Table 8.1 presents the record of the quality assurance testing results.

Table 8.1: Record of quality assurance testing results

Quality assurance testing	Record of testing
Sampling and testing plan	Appendix A
Pre-trial	Appendix B
In situ density, thickness and air voids of EME2	Appendix C
Subgrade and subbase	Appendix D
Dryback	Appendix E
Surface shape	Appendix F
Surface texture	Appendix G
Resilient modulus	Appendix L
Wearing course	Appendix P

8.2 Compaction Results

8.2.1 Air Voids of Field Cores

Ten field cores of the completed asphalt layers, through Lift 1 and Lift 2 were taken at random locations sampled on 28/04/17 in accordance with WA 701.1. Bulk density determination was in accordance with AS/NZS 2891.9.2 and the in situ air voids in accordance with AS/NZS 2891.8. Figure 8.3 and Figure 8.4 show a summary of the measured air voids of the cores. The in situ density and thickness results are presented in Appendix C.

Main Roads *Draft Specification 514* requires a characteristic in situ air void value of no greater than 5.5% which was comfortably met. The mean air voids content was 2.7% and 3.3% for Lift 1 and Lift 2 respectively. The upper characteristic air voids for Lift 1 and Lift 2 were 3.7% and 4.1% respectively, while the lower characteristic air voids was 1.8% for Lift 1 and 2.4% for Lift 2.

Figure 8.3: Air voids Lift 1 (LR1 & LR2)

Figure 8.4: Air voids Lift 2 (LR1 & LR2)

Source: Based on laboratory data from Main Roads.

In addition, four cores and four nuclear density samples were taken from sections of Lift 2 that showed a bitumen rich surface. Testing was performed to determine the in situ air voids. The results, shown in Figure 8.5 and Figure 8.6, indicate that the air voids were typical of the values shown in Figure 8.4.

Figure 8.5: Core results bitumen rich surface, Lift 2 (LR1 & LR2)

Figure 8.6: Nuclear gauge results bitumen rich surface, Lift 2 (LR1 & LR2)

Source: Based on laboratory data from Main Roads.

8.2.2 Air Voids of Field Cores Upper and Lower Half

The cores from each lift were cut in half and the density of the top and bottom halves was tested in accordance with AS/NZS 2891.9.2 with the air voids content calculated in accordance with AS/NZS 2891.8. Figure 8.7 displays the air voids of the upper and lower half in Lift 1 and Figure 8.8 the upper and lower half air voids of Lift 2. Figure 8.9 indicates that for the lower and upper half of both Lift 1 and Lift 2, around the mean (approximately 3% air voids) there was little difference between the layers. However, above the mean higher air voids were observed in the lower half of both Lift 1 and Lift 2.

Figure 8.7: Air voids lower and upper layer of Lift 1 (LR1 and LR2)

Source: Based on laboratory data from Main Roads.

Figure 8.8: Air voids lower and upper layer of Lift 2 (LR1 & LR2)

Figure 8.9: Trend line of lower half air voids

Source: Based on laboratory data from Main Roads.

8.2.3 Air Voids from Thin Layer Gauge

Main Roads technicians carried out bulk density testing with a Troxler 3340 nuclear thin layer density gauge in accordance with AS/NZS 2891.14.2. Densities were recorded at 18 sites in Lift 1, coinciding with one lot per lane and 9 tests per lot. However, in Lift 2 densities were recorded at 10 sites, at the same locations the field cores were taken.

The in situ air voids measured by the thin layer gauge are shown in Figure 8.10 through to Figure 8.12. The nuclear density results for Lift 1 were measured separately in each lane and cannot be compared with the Lift 1 core results sampled across the whole lot. However, core and nuclear testing for Lift 2 were both conducted on a lot basis and were sampled at the same locations to provide a point of comparison, this is presented in Figure 8.13.

Air voids were calculated in accordance with WA 733.1 and the field bulk density was determined in accordance with AS/NZS 2891.14.2.

Figure 8.10: Nuclear gauge air voids results: Lift 1 (LR1)

Source: Data supplied by Main Roads.

Source: Data supplied by Main Roads.

Figure 8.12: Nuclear gauge air voids results: Lift 2 (LR1 & LR2)

Source: Data supplied by Main Roads.

Source: Data supplied by Main Roads.

Nuclear density tests were taken at various sites on the longitudinal construction joints (Figure 8.14). The air voids on the joint for Lift 1 and Lift 2 respectively are shown in Figure 8.15 and Figure 8.16. The results indicate variable and high air voids.

Figure 8.14: Nuclear gauge densities recorded in the joint lines

Source: ARRB.

Figure 8.15: Joint air voids: Layer 1 (LR1 & LR2)

Figure 8.16: Joint air voids: Layer 2 (LR1 & LR2)

Source: Based on laboratory data from Main Roads.

The three joint overlapping methodologies discussed in Section 7.4 for Lift 2 are represented in Figure 8.16 where chainage 21128 was completed using typical practice from Lift 1, chainages 21155 to 21214 were constructed overlapping with large stone removal by hand raking and chainages 21239 and 21259 were taken at areas constructed with overlapping without the removal of large stones. The results indicate that overlapping the joint without the removal of large stones produced the lowest in situ air void content. Therefore, the solution is shown to be:

- compact the hot asphalt as described in Section 7.3.2, with a steel-drum roller overhanging the unsupported edge
- cut when warm (bevelled edge) at an angle of 45–60 ° using a cutting wheel attached to the roller, as per Main Roads Specification 510
- pave by overlapping of joint edge with 25–50 mm, in accordance with Main Roads Specification 510 and/or Main Roads Draft Specification 514

- butting up, rolling and pressing of joints taking care not to remove the large stones while raking
- compact.

8.3 Compacted Thickness

The target thickness of 105 mm for both layers was achieved for the EME2 mix. The average thickness of Lift 1 and Lift 2 was 110 mm and 105 mm, respectively. Figure 8.17 shows a full-length core and Figure 8.18 shows a close-up of the cut surface.

Figure 8.17: Full depth cores

Source: ARRB.

8.4 Mix Conformance

8.4.1 Main Roads Results

The volumetric and PSD data was compiled from the results of the quality control tests performed by Main Roads on the mix sampled at the plant. PSD results are shown in Figure 8.19 and Figure 8.20, whilst the volumetric properties are presented in Table 8.2.

Figure 8.18: Cores of Layer 1 and Layer 2

Source: Based on laboratory data from Main Roads.

 Table 8.2:
 Volumetric properties
 Main
 Roads

Date & time sampled	Bitumen content (%)	Maximum density (t/m³)	Degree of particle coating (%)	Moisture content of asphalt (%)
26/4/17-10:24 am	5.9	2.492	100	0.1
26/4/17–2:53 pm	5.9	2.497		
27/4/17–7:53 am	5.9	2.483		
27/4/17–2:53 pm	6.0	2.496		
	·		-	

Source: Data supplied by Main Roads.

Figure 8.20: PSD results of EME2 mix (27/04/17)

Source: Data supplied by Main Roads.

8.4.2 Downer Group Results

Downer Group performed gradation and volumetric property testing daily for the two days of production of the EME2 mix. Seven PSD results are shown in Figure 8.21 and Figure 8.22 while the volumetric properties are shown in Table 8.3. All the test results were within the specification tolerances.

Source: Based on data supplied by Downer Group.

Table 8.3:	Volumetric	properties	Downer Group
------------	------------	------------	--------------

Date & time sampled	Bitumen content (%)	Maximum density (t/m³)	Degree of particle coating (%)	Moisture content of asphalt (%)
26/4/17-10:24 am	5.9	2.499	100	0
26/4/17–11:23 am	6	2.498		
26/4/17–2:08 pm	5.9	2.492		
26/4/17–2:21 pm	5.9	2.498		
27/4/17-7:54 am	6.1	2.485		
27/4/17-8:50 am	5.8	2.493		
27/4/17–9:32 am	6.0	2.488		

Source: Based on data supplied by Downer Group.

Figure 8.22: PSD results of EME2 mix (27/0417)

Source: Based on data supplied by Downer Group.

Therefore, the results indicate that there is a good alignment between the Main Roads and Downer Group laboratories, both showing results within specification tolerances. This indicates that a good process control was achieved for the EME2 target grading, with results generally well inside the envelope. However, it is important to note that the results obtained from Downer Group showed a finer mix. This may be attributed to the difference in the number of samples tested by each laboratory (4 by Main Roads, 7 by Downer Group) as well as the tendency for PSDs to be finer during production.

8.5 Shape of EME2

Main Roads *Specification 510 Asphalt Intermediate Course* states that the surface shape in the transverse direction on the top of the compacted intermediate layer shall not exceed 5 mm maximum deviation within any 3 m long section (Main Roads 2016d). The surface shape was determined using a 3 m straight edge in a transverse direction as shown in Figure 8.23. The deviations from the straight edge target levels ranged from 0–6 mm (showing one non-conformance) in LR2 Lift 2 and 0–3 mm in LR1 Lift 2. The results are detailed in Appendix F. Generally, the results from the straight edge indicate that a uniform and even surface was constructed, conforming with specifications.

Figure 8.23: Checking shape in a transverse direction using 3 m straight edge

Source: ARRB.

The ARRB Walking Profiler, in accordance with Main Roads Test Method WA 313.4 (Main Roads 2012e), was used to measure roughness.

The IRI values were converted to the traditionally used NAASRA counts using Equation 2 (Austroads 2007a).

$$NRM = -1.27 + 26.49 * Lane IRI_{ac}$$
 2

where

NRM = NAASRA roughness counts (counts/km)

 $Lane IRI_{qc}$ = average International Roughness Index quarter-car of single outer and inner wheel path (m/km)

Figure 8.24 shows the International Roughness Index (IRI) of both lanes of Lift 1 and Lift 2. As expected, the results show that Lift 2 was generally smoother than Lift 1. The Austroads *Guide to Asset Management Part 5B: Roughness* approximate level of roughness for highways and main roads with a speed limit of 100 km/h is an IRI of 4.2 m/km (Austroads 2007a).

It is important to note the IRI_{qc} value measured using the ARRB Walking Profiler was assumed as the Lane IRI_{qc} as the measurement was taken between wheel paths on a new pavement and it is assumed roughness will be similar in a transverse direction across the surface. The traditionally used NAASRA counts are also presented in Figure 8.25.

Figure 8.24: Walking profiler results for IRI of EME2 Lift 1 & Lift 2

Source: Data supplied by Main Roads.

Source: Adapted from IRI data supplied by Main Roads using Austroads relationship.

8.6 Surface Texture

Surface texture was measured using Main Roads Test Method 310.1 (Main Roads 2012d). Surface texture is not specified and was measured for report only. The texture depth results ranged from 0.5 to 0.7 mm, with a mean of 0.6 mm. The results are detailed in Appendix G.

8.8 Binder Results

Main Roads sampled the EME2 bitumen at three increments per day, targeted at 5000 L,10 000 L and 15 000 L in-line during asphalt production. The results of the SAMI Bitumen Technologies bitumen test results are presented in Table 8.4 and the binder results taken in-line for the pre-trial on 12 April 2017 are presented in Table 8.5 and Table 8.6. The results from the trial, carried out on 26 April 2017 and 27 April 2017 are presented in Table 8.7 through to Table 8.18.

Generally, the EME2 bitumen results complied with Main Roads *Draft Specification 514* (Main Roads 2016b). However, there were a number of notable non-conformances and variations. As two of the non-conformances were associated with the Downer Group yard pre-trial and the other two were marginal, these were deemed acceptable for the trial. The non-conformances and variations are summarised as follows:

- Softening point (AS 2341.18) non-conformance:
 - S6799 sampled at 40 tonnes of EME2 asphalt production for the pre-trial (12 April 2017) – result of 73 °C, exceeding limit of 56–72 °C.
 - S6800 sampled at 95 tonnes of EME2 asphalt production for the pre-trial (12 April 2017) – result of 72.5 °C, exceeding limit of 56–72 °C.
- Penetration at 25.0 °C (AS 2341.12) and softening point (AS 2341.18) variation:
 - S6897 sampled at 5 000 litres of EME2 asphalt production (27 April 2017) result of 22 p.u and 67.5 °C softening point. This increase in penetration and decrease in softening point (from approximately 19 p.u and 71 °C) indicates that the sample may have been contaminated. This change was also observed in S6922 and S6923.
- Increase in softening point after RTFO treatment (AS/NZS 2341.10 and AS 2341.18) non-conformance:
 - S6922 sampled at 10 000 litres of EME2 asphalt production (27 April 2017) result of 10 °C, exceeding limit of 8 °C.
 - S6923 sampled at 12 000 litres of EME2 asphalt production (27 April 2017) result of 9 °C, exceeding limit of 8 °C.
- Viscosity at 60 °C (AS/NZS 2341.2) variation:
 - S6922 sampled at 10 000 litres of EME2 asphalt production (27 April 2017) result of 5802 Pa.s, significant drop from S6921 (10 025 Pa.s)
 - S6923 sampled at 12 000 litres of EME2 asphalt production (27 April 2017) result of 5805 Pa.s, significant drop from S6921 (10 025 Pa.s)

Notably, it may be seen that viscosity dropped from approximately 10 000 Pa.s to approximately 5800 Pa.s on 27 April 2017. The drop in viscosity between sample S6921 and S6922 and S6923 is also associated with an increase in mass change, softening point after RTFO and a marginal increase in softening point and penetration at 25.0 °C. Furthermore, the increase in mass change indicates that there was likely a contaminant in the bitumen tanker at point of loading. As sample S6897, S6922 and S6923 all show similar results, sampling error may be ruled out.

Table 8.4:	Pre-trial	binder	properties	(12/04/17)
------------	-----------	--------	------------	------------

Property	Test standard	Units	Limits	Test result
Penetration at 25 °C (100 g, 5 sec.)	AS 2341.12	ри	≥ 15 ≤ 25	16
Softening point	AS 2341.18 °C ≥ 56 ≤ 72		72.0	
Viscosity at 60 °C	AS/NZS 2341.2	Pa.s ≥ 900		14 400
Loss on heating	AS/NZS 2341.10 or AGPT/T103	% ≤ 0.5		< 0.1
Retained penetration	AS/NZS 2341.10 and AS 2341.12	%	≥ 55	88
Increase in softening point after RTFO treatment	AS/NZS 2341.10 and AS 2341.18	°C	≤ 8	5.5
Viscosity at 135 °C	AS/NZS 2341.2, AS 2341.3, AS/NZS 2341.4 or AGPT/T111	Pa.s	≥ 0.6	3.29
Matter insoluble in toluene	AS/NZS 2341.8	% mass	≤ 1.0	< 0.1
Viscosity at 60 °C after RTFO	AS/NZS 2341.10 and AS/NZS 2341.2	Pas	Report	41 300
Percent increase in viscosity at 60 °C after RTFO test	AS/NZS 2341.10 and AS/NZS 2341.2	%	Report	287

Source: Based on laboratory data from SAMI Bitumen Technologies.

Table 8.5: S6799 sampled at 40 tonnes of EME2 asphalt production (pre-trial 12/04/17)

Test type	Reference standard	Results	Specification limit	Date & tim	e sampled
Viscosity at 60 °C (Pa.s)	AS 2341.2	14781	900 Min	12/4/17	4:50pm
Viscosity at 135 °C (Pa.s)	AS 2341.4	2.69	0.6 Min		
Penetration at 25.0 °C (p.u)	AS 2341.12	18	15–25		
Penetration at 35.0 °C (p.u)	AS 2341.12	35			
Penetration Index 1.3		1.01			
Insoluble in toluene (%)	AS 2341.8	0.1	1.0 Max		
Softening point (°C)	AS 2341.18	73	56–72		
Mass change (%)	AS 2341.10	-0.04	0.5 Max		
AS2341.2 Dynamic viscosity at 60 °C	AS 2341.10	47924			
Ratio of viscosity before and after treatment at 60 °C (%)	AS 2341.10	324			
Softening point (°C)	AS 2341.10, AS 2341.18	78.5			
Increase in softening point after RTFO treatment (°C)	AS 2341.10, AS 2341.18	6	8 Max		
AS 2341.12 Penetration at 25 °C 100 g, 5 sec. (pu)	AS 2341.10	15			
Retained penetration (%)1,2	AS 2341.10, AS 2341.12	87	55 Min		

Table 8.6: S6800 sampled at 95 tonnes of EME2 asphalt production (pre-trial 12/04/17)

Test type	Reference standard	Results	Specification limit	Date & tim	ne sampled
Penetration at 25.0 °C (p.u)	AS 2341.12	18	15–25	12/4/17	5:10pm
Softening point (°C)	AS 2341.18	72.5	56–72		

Source: Based on laboratory data from Main Roads.

Table 8.7: S6892 sampled at 5 000 litres (trial 26/04/17)

Test type	Reference standard	Results	Specification limit	Date & tir	ne sampled
Penetration at 25.0 °C (p.u)	AS 2341.12	22	15–25	26/4/17	10:38am
Softening point (°C)	AS 2341.18	71	56–72		

Source: Based on laboratory data from Main Roads.

Table 8.8: S6908 sampled at 10 000 litres (trial 26/04/17)

Test type	Reference standard	Results	Specification limit	Date & time sampl	
Viscosity at 60 °C (Pa.s)	AS 2341.2	11 019	900 Min	26/4/17	11:24am
Viscosity at 135 °C (Pa.s)	AS 2341.4	2.52	0.6 Min		
Penetration at 25.0 °C (p.u)	AS 2341.12	19	15–25		
Penetration at 35.0 °C (p.u)	AS 2341.12	37			
Penetration Index 1.3		0.85			
Insoluble in toluene (%)	AS 2341.8	0.1	1.0 Max		
Softening point (°C)	AS 2341.18	71	56–72		
Mass change (%)	AS 2341.10	-0.02	0.5 Max		
AS2341.2 Dynamic viscosity at 60 °C	AS 2341.10	40 549			
Ratio of viscosity before and after treatment at 60 °C (%)	AS 2341.10	368			
Softening point (°C)	AS 2341.10, AS 2341.18	77.5			
Increase in softening point after RTFO treatment (°C)	AS 2341.10, AS 2341.18	6	8 Max		
AS 2341.12 Penetration at 25 °C 100 g, 5 sec. (pu)	AS 2341.10	15			
Retained penetration (%)1,2	AS 2341.10, AS 2341.12	77	55 Min		

Test type	Reference standard	Results	Specification limit	Date & tin	ne sampled
Viscosity at 60 °C (Pa.s)	AS 2341.2	10 623	900 Min	26/4/17	11:49am
Viscosity at 135 °C (Pa.s)	AS 2341.4	2.41	0.6 Min		
Penetration at 25.0 °C (p.u)	AS 2341.12	19	15–25	-	
Penetration at 35.0 °C (p.u)	AS 2341.12	38		-	
Penetration Index ^{1.3}		0.77			
Insoluble in toluene (%)	AS 2341.8	0.0	1.0 Max	-	
Softening point (°C)	AS 2341.18	70.5	56–72		
Mass change (%)	AS 2341.10	-0.03	0.5 Max		
AS2341.2 Dynamic viscosity at 60 °C	AS 2341.10	41 995		-	
Ratio of viscosity before and after treatment at 60 °C (%)	AS 2341.10	395			
Softening point (°C)	AS 2341.10 AS 2341.18	77.5			
Increase in softening point after RTFO treatment (°C)	AS 2341.10 AS 2341.18	7	8 Max		
AS 2341.12 Penetration at 25 °C 100 g, 5 sec. (pu)	AS 2341.10	16			
Retained penetration (%) ^{1,2}	AS 2341.10 AS 2341.12	86	55 Min		

Table 8.9: S6917 sampled at 12 500 litres (trial 26/04/17)

Table 8.10: S6893 sampled at 5 000 litres (trial 26/04/17)

Test type	Reference standard	Results	Specification limit	Date & time sampled	
Penetration at 25.0 °C (p.u)	AS 2341.12	21	15–25	26/4/17	1:56pm
Softening point (°C)	AS 2341.18	71	56–72		

Test type	Reference standard	Results	Specification limit	Date & time sampled	
Viscosity at 60 °C (Pa.s)	AS 2341.2	10 477	900 Min	26/4/17	2:57pm
Viscosity at 135 °C (Pa.s)	AS 2341.4	2.45	0.6 Min		
Penetration at 25.0 °C (p.u)	AS 2341.12	20	15–25		
Penetration at 35.0 °C (p.u)	AS 2341.12	38			
Penetration Index 1.3		0.97			
Insoluble in toluene (%)	AS 2341.8	0.4	1.0 Max		
Softening point (°C)	AS 2341.18	71	56–72		
Mass change (%)	AS 2341.10	0.00	0.5 Max		
AS2341.2 Dynamic viscosity at 60 °C	AS 2341.10	44 074			
Ratio of viscosity before and after treatment at 60 °C (%)	AS 2341.10	421			
Softening point (°C)	AS 2341.10, AS 2341.18	78			
Increase in softening point after RTFO treatment (°C)	AS 2341.10, AS 2341.18	7	8 Max		
AS 2341.12 Penetration at 25 °C 100 g, 5 sec. (pu)	AS 2341.10	17			
Retained penetration (%)1,2	AS 2341.10, AS 2341.12	82	55 Min		

Table 8.11: \$6912	sampled at 10 000 l	litres (trial 26/04/17)
--------------------	---------------------	-------------------------

Source: Based on laboratory data from Main Roads.

Table 8.12: S6894 sampled at 15 000 litres (trial 26/04/17)

Test type	Reference standard	Results	Specification limit	Date & time sampled	
Penetration at 25.0 °C (p.u)	AS 2341.12	19	15–25	26/4/17	3:40pm
Softening point (°C)	AS 2341.18	71	56–72		

Source: Based on laboratory data from Main Roads.

Table 8.13: S6895 sampled at 5 000 litres (trial 27/04/17)

Test type	Reference standard	Results	Specification limit	Date & time sampled	
Penetration at 25.0 °C (p.u)	AS 2341.12	19	15–25	27/4/17	8:06am
Softening point (°C)	AS 2341.18	70.5	56–72		

Test type	Reference standard	Results	Specification limit	Date & time sample	
Viscosity at 60 °C (Pa.s)	AS 2341.2	10 025	900 Min	27/4/17	8:54am
Viscosity at 135 °C (Pa.s)	AS 2341.4	2.31	0.6 Min		
Penetration at 25.0 °C (p.u)	AS 2341.12	19	15–25		
Penetration at 35.0 °C (p.u)	AS 2341.12	38			
Penetration Index ^{1.3}		0.77			
Insoluble in toluene (%)	AS 2341.8	0.1	1.0 Max		
Softening point (°C)	AS 2341.18	70.5	56–72		
Mass change (%)	AS 2341.10	-0.03	0.5 Max		
AS2341.2 Dynamic viscosity at 60 °C	AS 2341.10	34 444			
Ratio of viscosity before and after treatment at 60 °C (%)	AS 2341.10	344			
Softening point (°C)	AS 2341.10 AS 2341.18	76.5			
Increase in softening point after RTFO treatment (°C)	AS 2341.10 AS 2341.18	6	8 Max		
AS 2341.12 Penetration at 25 °C 100 g, 5 sec. (pu)	AS 2341.10	15			
Retained penetration (%) ^{1,2}	AS 2341.10 AS 2341.12	81	55 Min		

Table 8.14:	S6921 sampled at 10 000 litres ((trial 27/04/17)

Source: Based on laboratory data from Main Roads.

Table 8.15: S6896 sampled at 15 000 litres (trial 27/04/17)

Test type	Reference standard	Results	Specification limit	Date & time sampled	
Penetration at 25.0 °C (p.u)	AS 2341.12	19	15–25	27/4/17	9:40am
Softening point (°C)	AS 2341.18	70.5	56–72		

Source: Based on laboratory data from Main Roads.

Table 8.16: S6897 sampled at 5 000 litres (trial 27/04/17)

Test type	Reference standard	Results	Specification limit	Date & time sampled	
Penetration at 25.0 °C (p.u)	AS 2341.12	22	15–25	27/4/17	11:32am
Softening point (°C)	AS 2341.18	67.5	56–72		

Test type	Reference standard	Results	Specification limit	Date & tir	ne sampled
Viscosity at 60 °C (Pa.s)	AS 2341.2	5 802	900 Min	27/4/17	12:20pm
Viscosity at 135 °C (Pa.s)	AS 2341.4	1.87	0.6 Min		
Penetration at 25.0 °C (p.u)	AS 2341.12	22	15–25		
Penetration at 35.0 °C (p.u)	AS 2341.12	44			
Penetration Index ^{1.3}		0.55			
Insoluble in toluene (%)	AS 2341.8	0.1	1.0 Max		
Softening point (°C)	AS 2341.18	67.5	56–72		
Mass change (%)	AS 2341.10	0.17	0.5 Max		
AS2341.2 Dynamic viscosity at 60 °C	AS 2341.10	34 827			
Ratio of viscosity before and after treatment at 60 °C (%)	AS 2341.10	600			
Softening point (°C)	AS 2341.10, AS 2341.18	77		-	
Increase in softening point after RTFO treatment (°C)	AS 2341.10, AS 2341.18	10	8 Max	-	
AS 2341.12 Penetration at 25 °C 100 g, 5 sec. (pu)	AS 2341.10	16			
Retained penetration (%) ^{1,2}	AS 2341.10, AS 2341.12	75	55 Min		

Table 8.17: S6922 sampled at 10 000 litres (trial 27/04/17)

Test type	Reference standard	Results	Specification limit	Date & tin	ne sampled
Viscosity at 60 °C (Pa.s)	AS 2341.2	5 805	900 Min	27/4/17	12:33pm
Viscosity at 135 °C (Pa.s)	AS 2341.4	1.87	0.6 Min		
Penetration at 25.0 °C (p.u)	AS 2341.12	22	15–25		
Penetration at 35.0 °C (p.u)	AS 2341.12	43			
Penetration Index ^{1.3}		0.60			
Insoluble in toluene (%)	AS 2341.8	0.1	1.0 Max		
Softening point (°C)	AS 2341.18	67.5	56–72		
Mass change (%)	AS 2341.10	0.18	0.5 Max		
AS2341.2 Dynamic viscosity at 60 °C	AS 2341.10	32 608			
Ratio of viscosity before and after treatment at 60 °C (%)	AS 2341.10	562			
Softening point (°C)	AS 2341.10 AS 2341.18	76			
Increase in softening point after RTFO treatment (°C)	AS 2341.10 AS 2341.18	9	8 Max		
AS 2341.12 Penetration at 25 °C 100 g, 5 sec. (pu)	AS 2341.10	16			
Retained penetration (%) ^{1,2}	AS 2341.10 AS 2341.12	73	55 Min		

Table 8.18: S6923 sampled at 12 000 litres (trial 27/04/17)

Source: Based on laboratory data from Main Roads.

9 PERFORMANCE TESTING

9.1 Introduction

Laboratory testing of plant sampled mix obtained during the construction period was undertaken to characterise the engineering properties, validate the design mixture and investigate the performance of the EME2 mix. It is important to note that the samples used to test the resilient modulus, workability and moisture sensitivity were taken directly from the asphalt plant and were not laboratory prepared using reheated plant-sampled materials, as opposed to the other performance tests conducted. The laboratory testing was conducted during the period April 2017 to December 2017 by Main Roads, Queensland TMR, Downer Group, Boral and ARRB (as summarised in Appendix A). The samples were subjected to the laboratory tests presented in Table 9.1.

Laboratory characterisation	Testing standard	Record of results
Air voids in specimens compacted by gyratory compactor at 100 cycles	AS/NZS 2891.8	Appendix H & Appendix L
Moisture sensitivity (tensile strength ratio)	AGPT/T232	Appendix H
Wheel tracking (rut resistance)	AGPT/T231	Appendix I
Flexural modulus	AGPT/T274	Appendix J
Fatigue resistance	AGPT/T274	Appendix K
Resilient modulus (ITT)	AS/NZS 2891.13.1	Appendix L
Richness modulus	N/A	Appendix M
Voids in dry compacted filler	AS/NZS 1141.17	Appendix N
Delta ring and ball	EN 13179-1: 2000 and AS 2341.18	
Hamburg wheel tracking	TMR Q325	Appendix O

Table 9.1: Performance laboratory testing for EME2 specimens

9.2 Workability

The air void content of the mix after 100 gyrations of the gyratory compactor is used to provide an indication of the mix workability. It is important to note that the bulk density for the specimens was measured using two methods, the presaturation method (AS/NZS 2891.9.2) and the mensuration method (AS/NZS 2891.9.3). The air voids were also determined for two laboratory characterisations, the tensile strength ratio (TSR) test and the Indirect Tensile Test (ITT). The detailed results are presented in Appendix B for the pre-trial and Appendix H and Appendix L for the Tonkin Highway trial.

The air void contents for each specimen, noting the laboratory characterisation and method of determining bulk density sampled on 12 April 2017, 26 April 2017 and 27 April 2017 are summarised in Table 9.2 and it can be seen that all samples complied with the 6.0% maximum limit, in accordance with Main Roads *Draft Specification 514*. Notably, the results indicate that the method of determining the bulk density affects the measured air voids. The air voids are approximately 2% higher when the bulk density was determined using the mensuration method as opposed to the presaturation method.

Date Test report		AS/NZS 28	91.9.2 – presaturat (air voids %)	ion method	AS/NZS 2891.9.3 – mensuration method (air voids %)			
	no.	Specimen 1	Specimen 2	Specimen 3	Specimen 1	Specimen 2	Specimen 3	
12/04	S6850	2.9	2.9	3.1	4.9	5.1	4.8	
12/04	S6851	3.1	3.2	2.6	5.7	5.1	4.6	
26/04	S6848	2.6	2.6	2.5	4.3	4.9	4.4	
26/04	S6852	2.7	3.1	3.2	4.6	4.5	5.4	
27/04	S6849	2.9	2.9	3.0	4.8	4.8	4.8	
27/04	S6853	3.1	3.5	3.1	5.0	4.7	5.3	

Table 9.2:	Summary o	of air voids	in specimens	compacted by	gyratory com	pactor (100	cvcles)
	ounnury o		in opconnone		gjiatorj oon		

Source: Based on laboratory data from Main Roads.

9.3 Moisture Sensitivity

Main Roads performed the stripping potential of asphalt, tensile strength ratio (TSR) testing for the pre-trial (12 April 2017) and both days of the trial in accordance with Austroads Test Method AGPT/T232 (Austroads 2007b). The results are summarised in Figure 9.1 and detailed in Appendix H. This shows compliance with Main Roads *Draft Specification 514* limit of a minimum TSR value of 80%.

Source: Based on laboratory data from Main Roads.

9.4 Rut Resistance (Wheel Tracking)

The deformation results from the wheel tracking test are summarised in Table 9.3 and presented in detail in Appendix I. The test results were below the maximum allowable deformations for both 5000 (2.0 mm) and 30 000 cycles (4.0 mm) in accordance with Main Roads *Draft Specification 514*.

Samula		Deformation (mm)				
Sample	Air voids (%)	5 000 cycles (10 000 passes) 30 000 cycles (60 000				
5203	4.1	1.3	1.5			
5224	3.4	0.4	0.6			
	Mean	0.9	1.1			

Table 3.3. Summary of wheel hacking lest result	Table 9.3:	Summary	of wheel	tracking	test results
---	------------	---------	----------	----------	--------------

Source: Based on laboratory data from ARRB.

9.5 Flexural Modulus

The asphalt flexural modulus was measured in accordance with Austroads Test Method AGPT/T274, *Characterisation of Flexural Stiffness and Fatigue Performance of Bituminous Mixes* (Austroads 2016). The test involves characterisation of the asphalt flexural modulus at different loading frequencies and temperatures, where the results are used to develop a flexural modulus master curve. The master curve is constructed by shifting the mean test results obtained at the different frequencies for each temperature to form a continuous function at a reference temperature, selected as 15 °C to allow comparisons to Main Roads *Draft Specification 514* (Main Roads 2016b).

The flexural modulus was tested using six beams containing differing air void contents, thus three master curves were constructed for the following air void (AV) contents (as detailed in Appendix J):

- air voids 5.10%: specimen at AV 5.1% (5202-1)
- air voids 4.20%: specimens at AV 4.0%, 4.2% and 4.5% (5202-2, 5202-3, 5202-4)
- air voids 1.85%: specimens at AV 1.8% and 1.8% (5231-1, 5231-4)

A comparison between the three master curves is presented in Figure 9.2, indicating that the master curve shape is similar for AV 4.2% and 5.1% while the AV 1.85% master curve shows a significantly increased modulus at low frequencies, converging with increased frequency. The moduli determined from the master curves at 15 °C and 10 Hz are presented in Table 9.4, showing that only the master curve created using an air voids content of 1.85% conformed to specification. This indicates that for compliance, the in situ air void content of the EME2 mix should be approximately 1.85%.

Source: Based on laboratory data from ARRB

 Table 9.4:
 Flexural modulus results for master curves

Master curve	Flexural modulus at 15 °C and 10 Hz (MPa)
Air voids 5.1%	9 700
Air voids 4.2%	10 556
Air voids 1.85%	14 043

Source: Based on laboratory data from ARRB.

9.6 Fatigue Resistance

Asphalt fatigue testing was performed at a load frequency of 10 Hz, in accordance with the Austroads asphalt fatigue resistance test, AGPT/T274 (Austroads 2016). The tests were performed at a minimum of three strain levels (low, medium and high) and three temperatures (10 °C, 20 °C, 30 °C). However, Main Roads *Draft Specification 514* only includes requirements for the fatigue resistance at 20 °C, and as such, the tests conducted at 10 °C and 30 °C were only for research purposes.

Figure 9.3 presents a comparison of the fatigue results where $N_{f\,50}$ represents the number of cycles to failure, with failure defined as a 50% reduction in the asphalt modulus. Furthermore, the fatigue resistance at 1 million cycles for each of the testing temperatures is presented in Table 9.5. The results indicate that the fatigue characteristics of the EME2 mix improve with increase in temperature, with the fatigue resistance at 20 °C conforming to specifications. A summary of beam age, N_{f50} (number of repetitions to failure), strain level, beam air voids and initial modulus (at cycle 50) for each of the samples tested at 10 °C, 20 °C and 30 °C are detailed in Appendix K.

It is important to note that although AGPT/T274 recommends fatigue testing on a minimum of 18 beams tested at three different strain levels, a statistical analysis carried out as part of a NACoE project indicated it would be sufficient to test a minimum of 9 beams (Denneman & Bryant 2016, Denneman & Lam 2015, NACoE 2014).

Figure 9.3: Fatigue resistance results for EME2 mix

Source: Based on laboratory data from Boral.

Table 9.5: Fatigue resistance results

Temperature (°C)	Fatigue resistance at 10 Hz and 1 million cycles ($\mu\epsilon)$
10	139.46
20	182.44
30	225.99

Source: Based on laboratory data from Boral.

9.7 Resilient Modulus

A summary of the indirect tensile testing results is presented in Figure 9.4, Figure 9.5 and Figure 9.6. The Downer Group yard pre-trial (sampled 12 April 2017) mean resilient modulus was 6422 MPa with an average bulk density of 2.39 t/m³ and an average air void content of 4.5%. The mean resilient modulus for the Tonkin Highway trial was 9420 MPa and 6820 MPa for Lift 1 (sampled 26 April 2017) and Lift 2 (sampled 27 April 2017) respectively, with an average bulk density of 2.38 t/m³ and an average air void content of 4.8%. The raw data from the indirect tensile test is presented in Appendix B and Appendix L for the pre-trial and main trial respectively. Indirect tensile testing is not included in the *Draft Specification 514* EME2 mix design criteria and was conducted for research purposes.

Figure 9.4: Resilient modulus of EME2 pre-trial, plant mixed (sampled 12/04/17)

Source: Based on laboratory data from Main Roads

Figure 9.5: Resilient modulus of EME2 mix Layer 1, plant mixed (sampled 26/04/17)

Source: Based on laboratory data from Main Roads

3

Figure 9.6: Resilient modulus of EME2 mix Layer 2, plant mixed (sampled 27/04/17)

Source: Based on laboratory data from Main Roads

9.8 Richness Modulus

The minimum bitumen content by mass of the total mix must meet the minimum richness modulus in accordance with Main Roads *Draft Specification 514* requirements (Table 3.2). The richness modulus was calculated using the mix PSDs, binder content and maximum density according to Equation 3 (Main Roads 2016c).

$$K = \frac{(\frac{100B}{100 - B})}{\alpha^{5} \sqrt{\Sigma}}$$

where

B = binder content (% by mass of total asphalt mix)

 $\alpha = 2.65 / \rho_a$

$$\rho_a$$
 = particle density of combined mineral aggregates (t/m³)

$$\Sigma = (0.25G + 2.3S + 12s + 150f) / 100$$

G = percentage of aggregate particles greater than 6.30 mm

S = percentage of aggregate particles between 6.30 mm and 0.250 mm

s = percentage of aggregate particles between 0.250 mm and 0.075 mm

Note: G, S and s may be interpolated using a linear relationship from the grading curve using Australian standard sieve sizes.

j

The richness modulus was determined for specimens sampled on both 26 April 2017 and 27 April 2017 with an average richness modulus of 3.9 and 3.8 respectively, exceeding the 3.4 minimum requirement in *Draft Specification 514* (Main Roads 2016b). The data used for calculation is presented in Appendix M.

9.9 Voids in Dry Compacted Filler – Delta Ring and Ball

The voids in dry compacted filler (Rigden voids) test and the delta ring and ball test are used to assess the stiffening effect fillers have on the bituminous binders, which can have a significant impact on the workability and performance of an asphalt mix. A summary of the results is presented in Table 9.6 and the test reports are contained in Appendix N.

The Main Roads delta ring and ball test resulted in a non-conforming result of 18 °C, exceeding the 8–16 °C limit. It is important to note that although the voids in dry compacted filler test (Figure N 1) and the delta ring and ball test (Figure N 2) were conducted by ARRB, the results may be classified as invalid and are included for information only. This was due to the use of EME2 bitumen in the delta ring and ball test where Austroads Class 170 should have been used.

			Minera	al filler		Results	
Method of test	Unit	Property	Min	Max	Main Roads	Downer Group	ARRB
AS 1141.17	%	Voids in dry compacted filler	28	45	38	40	33
EN 13179-1: 2000 and AS 2341.18	°C	Delta ring and ball	8	16	18	14.5	3.5

Table 9.6: Voids an	d dry compacted filler t	est and delta ring	and ball test results	ofor EME2 mix
---------------------	--------------------------	--------------------	-----------------------	---------------

Source: Data supplied by Main Roads, Downer Group and ARRB.

9.10 Hamburg Wheel Tracking Device Testing

Although the Hamburg wheel tracking device (HWTD) testing is not a performance requirement for EME2 asphalt specified in *Draft Specification 514* (Main Roads 2016b), this testing was conducted to provide additional performance information to assist Main Roads and industry with future EME2 applications, in accordance with TMR *Test Method* Q325 (TMR 2016). The device was designed to test an asphalt mix for susceptibility to moisture induced damage (including stripping) and resistance to rutting by tracking steel wheels over submerged samples at elevated temperatures (50–60 °C).

It is important to note that the Hamburg wheel tracking device testing was conducted using field cores and laboratory manufactured slabs from samples taken from Downer Group's asphalt plant during production. The testing was carried out by TMR and the results are summarised in Table 9.7, displayed in Figure 9.7 and Figure 9.8 for the slabs and cores respectively. The HWTD results are detailed in Appendix O.

The HWTD results for the EME2 mixes show a linear rutting trend, which indicates that stripping was not observed during testing. The rut depths observed for the Tonkin field cores are relatively low compared to the pre-trial cores, which may be due to differences in compaction methodology and as a result, air void contents between the pre-trial and main trial. Furthermore, the results indicate that the slabs exhibited lower final rut depths compared to the field cores. This may be attributed to the ability of the plant to meet field compaction that is achieved in the laboratory under controlled conditions.

Although no dense graded mixes were tested as part of this project, ARRB, on behalf of Main Roads, had previously conducted a study on HWTD testing on mixes from the Gateway, WA trial section on Tonkin Highway. The rut depths observed in the 20 mm asphalt intermediate course containing C600 binder were in the range of 8.4–15.8 mm for slabs and 9.1–13.2 mm for cores, where some samples experienced stripping (Beecroft 2015). This indicates that the EME2 asphalt mix is less susceptible to moisture induced damage and rutting.

Sample type	Sample number(s)	Description	Sample date	Air voids content (%)	Cycles	Final rut depth (mm)	Mean rut depth by sample type (mm)
Slab	BA17-176	Downer Group yard trial (slab 1)	12/04/17	4.6	10 000	2.33	0.07
Slab	BA17-176	Downer Group yard trial (slab 2)	12/04/17	4.7	10 000	3.40	2.87
Core	BA17-178	Downer Group yard trial (cores 19A & 19B)	13/04/17	5.0	10 000	6.84	6.44
Core	BA17-178	Downer Group yard trial (cores 20A & 20B)	13/04/17	5.4	10 000	5.44	6.14
Slab	BA17-177	Tonkin Hwy trial (slab 1)	26/04/17	5.3	10 000	1.95	2.00
Slab	BA17-177	Tonkin Hwy trial (slab 2)	26/04/17	4.7	10 000	2.57	2.20
Core	BA17-179	Tonkin Hwy trial (cores 1 & 2)	27/04/17	3.3	10 000	3.45	
Core	BA17-179	Tonkin Hwy trial (cores 3 & 4)	27/04/17	3.8	10 000	4.23	4.40
Core	BA17-179	Tonkin Hwy trial (cores 5 & 6)	27/04/17	2.3	10 000	4.65	4.18
Core	BA17-179	Tonkin Hwy trial (cores 7 & 8)	27/04/17	2.1	10 000	4.39	

 Table 9.7: Hamburg wheel track testing results for EME2 mix

Note: Air void content of core test is the average air voids of the two cores. Source: Data supplied by TMR.

Source: Data supplied by TMR.

Source: Data supplied by TMR.

9.11 Performance Testing Summary

Laboratory testing was undertaken on samples from the Downer Group asphalt plant during construction of the trial section in an attempt to characterise the performance of the EME2 mix. The results of the performance tests conducted on the EME2 mix are summarised in Table 9.8. This shows that although the performance testing of the EME2 asphalt mix was generally in compliance with Main Roads *Draft Specification 514*, there were three non-conformances. The non-conformances were:

- Flexural stiffness at 50 \pm 3 $\mu\epsilon$, 15 °C and 10 Hz (AGPT/T274):
 - Master curve created using air voids 5.10% result of 9700 MPa, below minimum 14 000 MPa.
 - Master curve created using air voids 4.20% result of 10 556 MPa, below minimum 14 000 MPa.
- Delta ring and ball (EN 13179–1: 2000 and AS 2341.18):
 - Result of 18 °C, exceeding limit of 8–16 °C.

Although the flexural stiffness results show that two of the master curves created caused a non-conforming modulus at 50 ± 3 $\mu\epsilon$, 15 °C and 10 Hz, one master curve did comply. This indicates that for the EME2 mix to conform to specifications, the in situ air void content should be approximately 1.85%. Additionally, the delta ring and ball test shows that the stiffening effect of the mineral filler may be excessive.

Table 9.8:	Summary	of	performance	testing	of	EME2	asphalt	mix

Property	Unit	Min	Max	Results
Air voids in specimens compacted by gyratory compactor at 100 cycles	%	_	6.0	Presaturation bulk density TSR 12/4/17 3.0 TSR 26/4/17 2.6 TSR 27/4/17 2.9 ITT 12/4/17 3.0 ITT 26/4/17 3.0 ITT 27/4/17 3.2 Mensuration bulk density TSR 12/4/17 5.1 TSR 26/4/17 4.5 TSR 27/4/17 4.8 ITT 12/4/17 4.9 ITT 26/4/17 4.8 ITT 27/4/17 5.0
Stripping potential of asphalt – tensile strength ratio	%	80	_	12/4/17 110 26/4/17 94 27/4/17 100
Wheel tracking at 60 °C and 30 000 cycles (60 000 passes)	mm	-	4.0	1.1
Wheel tracking at 60 °C and 5 000 cycles (10 000 passes)	mm	-	2.0	0.9
Flexural stiffness at 50 \pm 3 $\mu\epsilon$, 15 °C and 10 Hz	MPa	14 000	-	AV 5.10% 9 700 AV 4.20% 10 556 AV 1.85% 14 043
Fatigue resistance at 20 °C, 10 Hz and 1 million cycles	με	150	_	10 °C* 139.5 20 °C 182.4 30 °C* 226.0
Resilient modulus (ITT)*	MPa	-	-	12/4/17 6 422 26/4/17 9 421 27/4/17 6 824

Property	Unit	Min	Max	Results	
Richness modulus	%	3.4	-	26/4/17 3.9 27/4/17 3.8	
Voids in dry compacted filler	%	28	45	38	
Delta ring and ball	°C	8	16	18	
				DY Core 6.14	
Hamburg wheel tracking*	mm	-	-	TH Core 4.18 TH Slab 2.26	

Note: DY = Downer Group yard, TH = Tonkin Highway

*Note: Conducted for research purposes only, no specified design criteria.

10 KNOWLEDGE TRANSFER

10.1 Tonkin Highway Trial Workshop

One of the key aspects of the trial was to obtain guidance on the trial installation from a practitioner with extensive EME2 experience. Monsieur Pierrick Dupuy on behalf of Dupuy Conseils, Reunion Island, France attended the Tonkin Hwy trial to provide technical assistance and knowledge transfer for future EME2 projects. Pierrick Dupuy did not identify any significant issues with the construction processes conducted for the EME2 trial but did make a number of recommendations for improvements to future projects in a report and a workshop with Downer Group, Main Roads and ARRB personnel on 28 April 2017.

The workshop covered the risk management, materials and specifications, mix design of EME2, specification of EME2, mix design validation, the Tonkin Highway trial and proposed recommendations and improvements for future projects. The recommendations and proposed improvements may be summarised, as follows:

- Ensure a prime coat is applied to the subbase to increase the bond strength between the limestone and EME2 as a lack of bond strength may increase the strains at the interface and decrease the service life of the pavement.
- Use an abrasion resistant thermocouple to monitor the internal temperature of the asphalt behind the paver and ensure the temperature is at least 145 °C for workability.
- Ensure the rolling pattern of the compaction train does not have a high level of overlap (> 300 mm) as this may impact the density variation in the mat, recommendations regarding compaction movements are presented in Figure 10.1. However, it is important to note that French compaction procedures may begin with a multi-tyred roller rather than a steel-drum roller, which may impact the relevance of this recommendation to Main Roads.
- When there is a gap between asphalt supply trucks the operator should reduce the speed of the paver rather than stopping it to guarantee the regularity of the voids in the longitudinal profile. After 20 minutes of inactivity, compaction should be complete and the EME2 must not be over-compacted. Plant should be parked away from hot or warm asphalt to avoid rutting.
- Care should be taken to avoid excess compaction and bleeding of the EME2 asphalt, especially when compacting in multiple lifts.
- Tack coat applications are in accordance with NF P 98-150-1 (2010) (Table 10.1).
- Unless the longitudinal joint is constructed using echelon paving (two pavers less than 50 m of separation), the steel drum roller shall overhang the edge of the asphalt by approximately 100 mm.
- Overlap the joint by approximately 30–40 mm (Dupuy 2017) and push with a rake to ensure the finer asphalt particles remain close to the surface of the joint (notably, this differs from the practice identified in Section 8.2.3). Compaction of the joint should begin using a pinch pass of a steel drum roller with approximately 50–200 mm of overlap.

Cylinde 1.7 m

30m

Figure 10.1: Recommended compaction operation

Table 10.1: Tack coat application rates

Asphalt interface	Tack coat	Bitumen rate	Emulsion
EME2/EME2	Emulsion 60% of 20/30 bitumen	250 g/m ²	420 g/m ²
EME2/EME2	Emulsion 60% of 35/50 bitumen	250 g/m ²	380 g/m ²

3

≃ 60m

2

(1

0-30m=

15cm

Source: NFP 98 150-1 (2010).

10.2 Asphalt Industry Workshop

On 19 July 2017 a workshop was held by Main Roads and ARRB to present the learnings from the Tonkin Highway trial to the asphalt industry. The workshop covered the following areas, with the key learnings described:

- Tonkin Highway trial planning and mix design:
 - For any project, additional emphasis should be placed on the importance of not exceeding the maximum production temperature of 190 °C.
 - EME2 is a mix with a high dust percentage (± 40%) therefore extreme care should be taken with the dust moisture content as this could affect achieving the desired production temperature. Good practice should be used in managing the dust, especially during winter.
- EME2 pavement design:
 - The design approach is compatible with the existing Austroads mechanistic design procedures.
 - The use of EME2 asphalt may save up 10% pavement thickness.
- production and construction:

PRP-16-8

- EME2 may generally be constructed like normal DGA.
- It is recommended that a vertical tank is used for the storage of EME2 binder.
- Survey levelling should be taken in 5 m intervals.
- The loose bulking factor shows an increase, compared to DGA.
- The compaction rollers should stay as close as practicable to the paver, and there should be overlapping of all three rollers.
- The roller tyres should be kept wet to prevent the lift-up of asphalt mix during compaction. However, the rollers should be taken off the mat if the mix is too hot and mobile. Rollers should not be kept stationary on mix paved on the same day.
- Joints construction identified to produce low air voids, as described in Section 8.2.3.
- Coring is to be undertaken the day following paving.
- conformance and research testing:
 - The results show that although the performance testing of the EME2 asphalt mix was generally compliant, there were non-conformances (it is important to note that when the workshop was undertaken performance testing was incomplete).
- future projects that may include EME2 pavements:
 - Kwinana Freeway widening
 - Roe Highway / Kalamunda Road.

11 CONCLUSIONS AND RECOMMENDATIONS

This report has presented details of an EME2 (Enrobés á Module Élevé Class 2) asphalt production and placement field trial that took place on 26 and 27 April 2017, as well as a pre-trial that was performed on 12 April 2017. The pre-trial was performed at Downer Group Gosnells asphalt plant yard whereas the main trial was carried out at the intersection of the Tonkin Highway and Kelvin Road in Perth, Western Australia. The purpose of the trial was to assess whether the design mix could be manufactured, placed and compacted to the expected standards using local materials and locally-available equipment. The conduct of a successful trial would assist Main Roads and industry to successfully transfer the French EME2 technology to Western Australia. The trial was conducted as part of the Western Australia Road Research and Innovation Program (WARRIP).

Laboratory testing was conducted by Main Roads, Boral, SAMI Bitumen Technologies, TMR Queensland and ARRB. Based on core results it can be concluded that EME2 can be successfully produced and placed using local aggregates and locally-available equipment. EME2 achieved the target thickness and low in situ air voids on both layers.

To achieve optimum quality control, it is essential that a thorough plan – in terms of production, placement and safety – be developed if EME2 asphalt is to be successfully implemented.

This plan should be continually monitored from commencement, to ensure the production and construction crews are aware of the differences between EME2 and typical DGA intermediate course mixtures.

It is recommended that, during compaction, the rollers should not remain stationary whether on the newly-compacted EME2 or following the completion of the works until the mix has cooled, as this could leave deep imprints on the EME2 surface. Furthermore, care should be taken to avoid excessive compaction and bleeding of the EME2 asphalt, especially when compacting in multiple lifts. It is also recommended that the method of joint construction adopted for Lift 2 of the trial be adopted for future EME2 asphalt pavements to reduce air voids along the joint lines.

Recommendations relative to the current Main Roads EME2 documentation are provided in Section 12.

12 MAIN ROAD DOCUMENTATION RECOMMENDATIONS

Findings from the Tonkin Highway trial indicate that best practice for the production and construction of EME2 asphalt is generally in accordance with *Draft Specification 514* (Main Roads 2016b). Recommendations based upon the findings from the trial, as well as the report of experienced EME2 practitioner Monsieur Pierrick Dupuy (available on the WARRIP website (www.warrip.com.au)) for Main Roads to consider relative to the revision of *Draft Specification 514* include:

- Reducing the target production temperature from 185–190 °C to 175–185 °C to reduce the risk of overheating the mix (514.32).
- The temperature of the mixed asphalt shall be measured and recorded at the discharge point of the pugmill or mixing drum. The temperature of the asphalt shall be between 170 °C and 180 °C for EME2 unless otherwise directed by the Superintendent (514.32.6).
- Include a note regarding the placement of EME2 as follows:
 - While EME2 asphalt is similar in many ways to conventional DGA, the Contractor's placement methodology for EME2 asphalt should recognise EME2 specific construction practices or conditions may need to be adopted for construction. For example, experience has shown that EME2 asphalt may be more 'lively' during compaction in periods of hot weather and contractors may need to adjust their construction processes to manage this.
- Asphalt shall be delivered to the work site at temperatures between 160 °C and 180 °C. The internal temperature of the asphalt behind the paver must be no less than 145 °C (514.41.3).
- If a delay is forecast to occur between successive truck deliveries of more than 20 minutes to the paver, the speed of paving should be slowed rather than halted (514.41.4).
- The longitudinal joint unconfined edges of a paving run shall be compacted using a steel drum roller with approximately 100 mm drum overhang. Compaction of the uncompacted asphalt adjacent to the longitudinal joint shall begin using a pinch pass of a steel drum roller (514.48.2).
- When the adjacent paver run is placed the uncompacted asphalt shall be placed to overlap the compacted asphalt of the previous run by approximately 25 and 75 mm in width of loose asphalt. The loose asphalt shall be pushed back using a lute to form a ridge along the edge of the joint. Hand raking should not remove large stones (514.48.3).
- The rolling pattern of the compaction train should target 150 mm of overlap (514.52.2).
- Compaction plant shall be kept in continuous operation as much as practicable and in such a
 manner that all parts of the pavement receive substantially equal compaction. In the event of
 a delay in laying operation, rolling is to be carried out as close as practicable to the paving
 machine. After 20 minutes of inactivity compaction operation is to be halted to avoid
 over-compaction, plant shall not be parked on work carried out on the same day (514.52.4).

Furthermore, it is recommended that Main Roads incorporate a requirement regarding a placement trial before an EME2 mix is approved for use on further works into ERN13 and/or *Draft Specification 514*, as follows:

 Each nominated mix must be subjected to a placement trial. A trial section shall be constructed using the same construction plant, processes and methodology that is proposed to be used for the remainder of the works represented by the trial section.

- A trial section shall be at least 200 m long and 3 m wide, this is suggested so that a longitudinal joint is included in the section. The Contractor must design the trial to implement all operations and testing required by this Specification. The Contractor shall submit a copy of the completed inspection and test plan and all relevant test results and records from the placement trial. Prior to further placement of the Contractor's nominated mix in the works, the Administrator shall review the outcomes of the placement trial. No further works shall be undertaken until Main Roads has given approval to proceed (Hold Point).
- In the event of a non-conformance in the placement trial, or when Main Roads determines that a previous trial is not representative of the materials, asphalt mix proportions, temperature, plant, rate of output and/or method of placement, a new trial must be undertaken and the Hold Point re-released, prior to full-scale placement resuming.

REFERENCES

- Association Francaise de Normalisation, *Road pavement structural design: application to new pavements* (in French), NF P 98-086- 2011, AFNOR, Paris, France.
- Austroads 2005, Asphalt binder content (ignition oven method), AGPT-T234, Austroads, Sydney, NSW.
- Austroads 2006a, Deformation resistance of asphalt mixtures by the wheel tracking test, AGPT-T231, Austroads, Sydney, NSW.
- Austroads 2006b, Handling viscosity of polymer modified binders (Brookfield Thermosel), AGPT-T111, Austroads, Sydney, NSW.
- Austroads 2006c, Pre-treatment and loss on heating of bitumen multigrade and polymer binders (rolling thin film oven [RTFO] test), AGPT-T103, Austroads, Sydney, NSW.
- Austroads 2007a, Stripping potential of asphalt tensile strength ratio, AGPT-T232, Austroads, Sydney, NSW.
- Austroads 2007b, *Guide to asset management: part 5B: roughness,* AGAM05B-07, Austroads, Sydney, NSW.
- Austroads 2007c, *Stripping potential of asphalt: tensile strength ratio*, AGPT-T232, Austroads, Sydney, NSW.
- Austroads 2012, *Guide to pavement technology: part 2: pavement structural design*, 3rd edn, AGPT02-12, Austroads Sydney, NSW.
- Austroads 2014a, *High modulus high fatigue resistance asphalt (EME2) technology transfer,* AP-T283-14, Austroads, Sydney, NSW.
- Austroads 2014b, Guide to pavement technology: part 4B: asphalt, AGPT4B-14, Austroads, Sydney, NSW.
- Austroads 2016, Characterisation of flexural stiffness and fatigue performance of bituminous mixes, AGPT-T274, Austroads, Sydney, NSW.
- Beecroft, A 2015, 'Hamburg wheel tracking device testing of Main Roads WA asphalt samples', contract report 010978, ARRB Group, Vermont South, Vic.
- Denneman, E & Bryant, P 2016, 'Development of mix specific modulus master curves and fatigue models for asphalt pavement design', *ARRB conference, 27th, 2016, Melbourne, Vic,* ARRB Group, Vermont South, Vic, 12 pp.
- Denneman, E & Lam, T 2015, Asphalt fatigue at Queensland temperatures: year 2 progress report, ARRB Group, Vermont South, Vic.
- Dupuy, P 2017, *Tonkin highway intersection improvements: trial enrobes a module eleve 0/14 classe 2 (EME 2)*, Dupuy Conseils, Reunion, France.
- Laboratoire Central des Ponts et Chaussées 1997, French design manual for pavement structures, LCPC, Paris, France.
- Main Roads Western Australia 2011, *Bitumen content and particle size distribution of asphalt and stabilised soil: centrifuge method*, test method WA 730.1, Main Roads, Perth, WA.

Main Roads 2012a, Bulk density and void content of asphalt, test method WA 733.1, Main Roads, Perth WA.

- Main Roads Western Australia 2012b, Determination of the moisture content of aggregate: oven drying method, test method WA 212.1, Main Roads, Perth, WA.
- Main Roads Western Australia 2012c, Determination of the moisture content of aggregate: microwave oven method, test method WA 212.2, Main Roads, Perth, WA.
- Main Roads Western Australia 2012d, Particle size distribution of aggregates, test method WA 210.1, Main Roads, Perth, WA.
- Main Roads Western Australia 2012e, *Pavement skid resistance: British pendulum* method, test method WA 310.1, Main Roads, Perth, WA.
- Main Roads Western Australia 2012f, *Surface profile: ARRB TR walking profiler*, test method WA 313.4, Main Roads, Perth, WA.
- Main Roads Western Australia 2012g, Surface shape using a straightedge, test method WA 313.2, Main Roads, -, WA.
- Main Roads Western Australia 2013a, *Los Angeles abrasion value*, test method WA 220.1, Main Roads, Perth, WA.
- Main Roads Western Australia 2013b, *Preparation of asphalt for testing*, test method WA 705.1, Main Roads, Perth, WA.
- Main Roads Western Australia 2013c, Procedure for the design of road pavements: Western Australian supplement to the Austroads Guide to Pavement Technology: Part 2: Pavement Structural Design, engineering road note 9, Main Roads, Perth, WA.
- Main Roads Western Australia 2013d, Sampling and storage of asphalt, test method WA 701.1, Main Roads, Perth, WA.
- Main Roads Western Australia 2015a, Earthworks, specification 302, Main Roads, Perth, WA.
- Main Roads Western Australia 2015b, *Materials for bituminous treatments,* specification 511, Main Roads, Perth, WA.
- Main Roads Western Australia 2016a, Flakiness index, test method WA 216.1, Main Roads, Perth, WA.
- Main Roads Western Australia 2016b, *High modulus asphalt (EME2),* draft specification 514, Main Roads, Perth, WA.
- Main Roads Western Australia 2016c, *High modulus asphalt (EME2) mix design*, engineering road note 13, Main Roads, Perth, WA.

Main Roads Western Australia 2017a, Pavements, specification 501, Main Roads, Perth, WA.

Main Roads Western Australia 2017b, Asphalt intermediate course, specification 510, Main Roads, Perth, WA.

NACoE 2014, Asphalt fatigue at Queensland temperatures: year 1 progress report: literature review and experiment design, ARRB Group, Vermont South, Vic.

- Queensland Department of Transport and Main Roads 2015a, *High modulus asphalt (EME2) pavement design,* technical note 142, TMR, Brisbane, Qld.
- Queensland Department of Transport and Main Roads 2015b, *PSTS107 High modulus asphalt (EME2),* project specific technical specification, Transport and Main Roads specifications, TMR, Brisbane, Qld.
- Queensland Department of Transport and Main Roads 2016, 'Test method Q325: stability of asphalt: Hamburg wheel tracking device (HWTD)', in *Materials testing manual*, 4th edn, TMR, Brisbane, Qld.
- Roads & Maritime Services 2012, *Moisture content of hot bituminous mixes (mass loss method),* test method T660, RMS, Sydney, NSW.

European Standards

- EN 12697-8:2003, Bituminous mixtures: test methods for hot mix asphalt: part 8: determination of void characteristics of bituminous specimens.
- EN 12697-12:2008, Bituminous mixtures: test methods for hot mix asphalt: part 12: determination of the water sensitivity of bituminous specimens.
- EN 12697-22:2007, Bituminous mixtures: test methods for hot mix asphalt: part 22: wheel tracking.
- EN 12697-24:2012, Bituminous mixtures: test methods for hot mix asphalt: part 24: resistance to fatigue.
- EN 12697-25:2016, Bituminous mixtures: test methods for hot mix asphalt: part 25: cyclic compression test.
- EN 12697-26:2012, Bituminous mixtures: test methods for hot mix asphalt: part 26: stiffness.
- EN 12697-31:2007, Bituminous mixtures: test methods for hot mix asphalt: part 31: specimen preparation by gyratory compactor.
- EN 12697-35:2016, Bituminous mixtures: test methods; part 35: laboratory mixing.
- EN 13179-1: 2000, Tests for filler aggregate used in bituminous mixtures: part 1: delta ring and ball test.
- EN 1426:2015, Bitumen and bituminous binders: determination of needle penetration.
- EN 1427:2015, Bitumen and bituminous binders: determination of the softening point: ring and ball method.

French Standards

NF P 98-086- 2011, Road pavement structural design: application to new pavements (in French).

NF P 98-150-1:2010, Bituminous asphalts: laying of pavement bases, binder and wearing courses: part 1: hot-mix asphalts: constituents, formulation, fabrication, transport, laying and site inspection (in French).

Australian and New Zealand Standards

AS 1141.11.1-2009, Methods for sampling and testing aggregates: particle size distribution: sieving method.

- AS/NZS 1141.17-2014, Methods for sampling and testing aggregates: voids in dry compacted filler.
- AS 1141.22-2008, Methods for sampling and testing aggregates: wet/dry strength variation.
- AS 1141.23-2009, Method for sampling and testing aggregates: Los Angeles value.
- AS 1141.25.2-2003 (R2013), Method for sampling and testing aggregates: degradation factor.

- AS 1141.6.1-2000 (R2016), Methods for sampling and testing aggregates: particle density and water absorption of coarse aggregate: weighting-in-water method.
- AS 1160-1996, Bituminous emulsions for the construction and maintenance of pavements.
- AS 2150-2005, Hot mix asphalt.
- AS 2341.12-1993, Methods of testing bitumen and related roadmaking products: determination of penetration.
- AS 2341.18-1992, Methods of testing bitumen and related roadmaking products: determination of softening point (ring and ball method).
- AS 2341.3-1993, Methods of testing bitumen and related roadmaking products: determination of kinematic viscosity by flow through a capillary tube.
- AS/NZS 1141.17-2014, Method of sampling and testing aggregates: voids in dry compacted filler.
- AS/NZS 2341.10-2015, Methods of testing bitumen and related roadmaking products: determination of the effect of heat and air on a moving film of bitumen (rolling thin film oven (RTFO) test).
- AS/NZS 2341.2-2015, Methods of testing bitumen and related roadmaking products: determination of dynamic viscosity by vacuum capillary viscometer.
- AS/NZS 2341.4-2015, Methods of testing bitumen and related roadmaking products: determination of dynamic viscosity by rotational viscometer.
- AS/NZS 2341.8-2016, Methods of testing bitumen and related roadmaking products: determination of matter insoluble in toluene.
- AS/NZS 2891.10-2015, Method of sampling and testing asphalt: moisture content of asphalt.
- AS/NZS 2891.11-2014, Method of sampling and testing asphalt: degree of particle coating.
- AS/NZS 2891.3.1-1997, Method of sampling and testing asphalt: binder content and aggregate grading: reflux method.
- AS/NZS 2891.7.1-2015, Method of sampling and testing asphalt: determination of maximum density of asphalt: water displacement.
- AS/NZS 2891.8-2014, Method of sampling and testing asphalt: voids and volumetric properties of compacted asphalt mixes.
- AS/NZS 2891.9.2-2014, Method of sampling and testing asphalt: determination of bulk density of compacted asphalt: presaturation method.
- AS/NZS 2891.9.3-2014, Methods of sampling and testing asphalt: determination of bulk density of compacted asphalt: mensuration method.
- AS/NZS 2891.13.1-2013, Method of sampling and testing asphalt: determination of the resilient modulus of asphalt indirect tensile method.
- AS/NZS 2891.14.2-2013, Methods of sampling and testing asphalt method 14.2: field density tests determination of field density of compacted asphalt using a nuclear thin-layer density gauge.

APPENDIX A SAMPLING AND TESTING PLAN

Sample No.	Date of sampling	Tests	Tested	Laboratory
		Pre Trial		
6797	12/04/2017	PSD & binder content (AS/NZS 2891.3.1 or AG:PT/T234 or WA 730.1)	~	Main Roads WA
6797	12/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	✓	Main Roads WA
6797	12/04/2017	Moisture content (AS/NZS 2891.10 or T660)	\checkmark	Main Roads WA
6797	12/04/2017	Uniform coating of binder (AS/NZS 2891.11)	\checkmark	Main Roads WA
6898	12/04/2017	PSD & binder content (AS/NZS 2891.3.1 or AG:PT/T234 or WA 730.1)	~	Main Roads WA
6798	12/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	\checkmark	Main Roads WA
6850	12/04/2017	ITT (AS/NZS 2891.13.1)	\checkmark	Main Roads WA
6850	12/04/2017	Voids and volumetric properties (AS/NZS 2891.8)	✓	Main Roads WA
6850	12/04/2017	Bulk density – presaturation method (AS/NZS 2891.9.2)	\checkmark	Main Roads WA
6850	12/04/2017	Bulk density – mensuration method (AS/NZS 2891.9.3)	~	Main Roads WA
6851	12/04/2017	TSR (AG:PT/ T232)	\checkmark	Main Roads WA
6851	12/04/2017	Voids and volumetric properties (AS/NZS 2891.8)	\checkmark	Main Roads WA
6851	12/04/2017	Bulk density – presaturation method (AS/NZS 2891.9.2)	~	Main Roads WA
6851	12/04/2017	Bulk density – mensuration method (AS/NZS 2891.9.3)	~	Main Roads WA
6804	12/04/2017	Hamburg wheel tracking (Q325)	✓	TMR Queensland
		Trial		
6821	26/04/2017	PSD & binder content (AS/NZS 2891.3.1 or AG:PT/T234 or WA 730.1)	\checkmark	Main Roads WA
6821	26/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	✓	Main Roads WA
6821	26/04/2017	Moisture content (AS/NZS 2891.10 or T660)	✓	Main Roads WA
6821	26/04/2017	Uniform coating of binder (AS/NZS 2891.11)	✓	Main Roads WA
6822	26/04/2017	PSD & binder content (AS/NZS 2891.3.1 or AG:PT/T234 or WA 730.1)	\checkmark	Main Roads WA
6822	26/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	✓	Main Roads WA
6848	26/04/2017	TSR (AG:PT/ T232)	✓	Main Roads WA
6848	26/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	✓	Main Roads WA
6848	26/04/2017	Voids and volumetric properties (AS/NZS 2891.8)	\checkmark	Main Roads WA
6848	26/04/2017	Bulk density – presaturation method (AS/NZS 2891.9.2)	\checkmark	Main Roads WA
6848	26/04/2017	Bulk density – mensuration method (AS/NZS 2891.9.3)	\checkmark	Main Roads WA
6852	26/04/2017	ITT (AS 2891.13.1)	✓	Main Roads WA
6852	26/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	\checkmark	Main Roads WA
6852	26/04/2017	Voids and volumetric properties (AS/NZS 2891.8)	\checkmark	Main Roads WA
6852	26/04/2017	Bulk density – presaturation method (AS/NZS 2891.9.2)	✓	Main Roads WA
6852	26/04/2017	Bulk density – mensuration method (AS/NZS 2891.9.3)	\checkmark	Main Roads WA

Table A 1: Sampling and testing plan from Downer Group asphalt plant

6857	26/04/2017	Wheel tracking at 60 °C and 30,000 cycles (60,000 passes)	\checkmark	ARRB
6857	26/04/2017	Wheel tracking at 60 °C and 5,000 cycles (10,000 passes)	\checkmark	ARRB
6857	26/04/2017	Fatigue resistance at 20 °C, 10 Hz and 1 million cycles	✓	Boral
6857	26/04/2017	Flexural stiffness (AG:PT/T274)	~	ARRB
6855	26/04/2017	Hamburg wheel tracking (Q325)	✓	TMR Queensland
6933	26/04/2017	Voids in dry compacted filler, softening point, delta ring and ball (AS/NZS 1141.17, EN 13179-1 and AS 2341.18)	~	ARRB, Main Roads
		Trial		
6823	27/04/2017	PSD & binder content (AS/NZS 2891.3.1 or AG:PT/T234 or WA 730.1)	\checkmark	Main Roads WA
6823	27/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	\checkmark	Main Roads WA
6823	27/04/2017	Moisture content (AS/NZS 2891.10 or T660)	\checkmark	Main Roads WA
6823	27/04/2017	Uniform coating of binder (AS/NZS 2891.11)	\checkmark	Main Roads WA
6824	27/04/2017	PSD & binder content (AS/NZS 2891.3.1 or AG:PT/T234 or WA 730.1)	✓	Main Roads WA
6824	27/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	\checkmark	Main Roads WA
6849	27/04/2017	TSR (AG:PT/ T232)	\checkmark	Main Roads WA
6849	27/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	\checkmark	Main Roads WA
6849	27/04/2017	Voids and volumetric properties (AS/NZS 2891.8)	\checkmark	Main Roads WA
6849	27/04/2017	Bulk density – presaturation method (AS/NZS 2891.9.2)	\checkmark	Main Roads WA
6849	27/04/2017	Bulk density – mensuration method (AS/NZS 2891.9.3)	✓	Main Roads WA
6853	27/04/2017	ITT (AS 2891.13.1)	\checkmark	Main Roads WA
6853	27/04/2017	Maximum density of asphalt (AS/NZS 2891.7.1)	\checkmark	Main Roads WA
6853	27/04/2017	Voids and volumetric properties (AS/NZS 2891.8)	\checkmark	Main Roads WA
6853	27/04/2017	Bulk density – presaturation method (AS/NZS 2891.9.2)	✓	Main Roads WA
6853	27/04/2017	Bulk density – mensuration method (AS/NZS 2891.9.3)	~	Main Roads WA
6858	27/04/2017	Wheel tracking at 60 °C and 30,000 cycles (60,000 passes)	\checkmark	ARRB
6858	27/04/2017	Wheel tracking at 60 °C and 5,000 cycles (10,000 passes)	\checkmark	ARRB
6858	27/04/2017	Fatigue resistance at 20 °C, 10 Hz and 1 million cycles	\checkmark	Boral
6858	27/04/2017	Flexural stiffness (AG:PT/T274)	✓	Main Roads WA
6858	27/04/2017	Hamburg wheel tracking (Q325)	√	TMR Queensland
6858	27/04/2017	Voids in dry compacted filler, softening point, delta ring and ball (AS 1141.17, EN 13179-1 and AS 2341.18)	✓	ARRB, Main Roads

APPENDIX B PRE-TRIAL TEST RESULTS

Table B 1: EME2 bitumen test report RQ170093 (SAMI)

Accredited for compliance with ISO/IEC 17025 – Testing Accreditation Number 5598

PRODUCT TEST REPORT

Test Report No.:	RQ170093
Product:	SAMIFALT EME
Batch:	PB17260
SAMI Sample No.:	S170696
Date of Sampling:	28-03-2017
Sample Source:	Tank 10 ex SBT POB
Details:	High Modulus Asphalt Binder
Date Tested:	28-03-2017
Specification:	QTMR PSTS107

SAMI Bitumen Technologies

1 Bulk Terminals Drive Port of Brisbane Queensland 4178

Laboratory @samibitumen.com.au

Ph: 07 3895 2183 Fax: 07 3895 2189

Method	Property	Result	Specification
		10	15 05
AS 2341.12	Penetration at 25°C, 100g, 5s, 0.1mm	16	15 - 25
AS 2341.18	Softening Point, °C	72.0	56 - 72
AS 2341.2	Viscosity at 60°C, Pas	14400	900 min.
SAMI-IT09B41	Penetration Index	0.7	Report
AS 2341.4	Viscosity at 135°C, Pas	3.29	0.6 min.
AS 2341.12/.10	Penetration at 25°C RTFO, 100g, 0.1mm	14	Report
AS 2341.18/.10	Softening Point RTFO, °C	77.5	Report
AS 2341.2/.10	Viscosity at 60°C RTFO, Pas	41300	Report
Calculation	Viscosity at 60°C RTFO as % of original	287	Report
Calculation	Increase in Softening Point, °C	5.5	≤ 8
Calculation	Pen Retain %	88	55 min.
Frequency tests	Batch PB17219 was tested in the SAMI Sydi	ney laborato	bry
AGPT/T103	Loss on heating, % mass	<0.1	0.5 max.
AS 2341.8	Matter insoluble in toluene, % mass	<0.1	1.0 max.

Certificate Issued Date: 29-03-2017 Sampling Method: AS 2008 (1997) B5.2 Testing Operator Name: G. R. & A. S.

Jarloffr

Authorised Officer of the Company J. Hoffman, Technical Support Manager, QLD

> Doc: SAMI-IT09M29KBIT Issue A Revision 0 11/10/2006 Page 1 of 1

Partnering with road paving businesses Adding value through focus, expertise and innovation www.samibitumen.com.au

Table B 2: EME2 bitumen test report R17-0360 (Downer Group)

Report No: R17-0360 Client Ref: EME2 Trial 12-0 Sample Description: EME Client Address: Downer, WA Quarry Road Gosnells WA 61 Sample Source: WA WA WA Image: Source: WA WA Softening point AS 2341.12 16 10 Softening point AS 2341.18 73 55 55 56 56 Viscosity at 60°C (Pa.s) AS 2341.10 87 M 56 56 Increase in softening point after RTFO ¹ AS 2341.10 87 M 56 Viscosity @ 135.0°C (Pa.s) AS 2341.10 8 M 56 Viscosity @ 135.0°C (Pa.s) AS 2341.10 8 M 56 Viscosity @ 135.0°C (Pa.s) AS 2341.10 8 M 59 56 Viscosity @ 135.0°C (Pa.s) AS 2341.10 59 56 59 56 Viscosity at 60°C after RTFO AS 2341.10 59 59 56 59 59 56 Viscosity at 60°C Test Conditions Shear Rate (1/s) 0.027 35 59 56 71 59	F	BITUMEN T STS107 – High Modulus	EST REPORT Asphalt (EME2) Table 10	0.2.5	
Sample Description: EME Client Address: Downer, WA Quarry Road Gosnells WA 61 Sample Source: WA Test Type Reference Standard Results Spe Penetration at 25.0°C (p.u) AS 2341.12 16 11 Softening point AS2341.18 73 50 Viscosity at 60°C (Pa.s) AS2341.2 19032 Mi Loss on heating (%) AGPT/T103 0.0 Mi Retained penetration (%) ^{1,2} AS 2341.10, AS 2341.10, AS 2341.10, AS 2341.18 8 Mi Increase in softening point after RTFO ¹ AS 2341.10, AS 2341.18 8 Mi Viscosity @ 135.0°C (Pa.s) AS 2341.4* 2.92 Mi Insolubles in Toluene (%) AS 2341.10, AS 2341.2 13988 Penetration Index ^{1,3} - 0.83 Viscosity at 60°C after RTFO AS 2341.10 113988 Percent increase in viscosity at 60°C after RTFO AS 2341.10 599	Report No:	R17-0360	Client Ref:	EME2 T	rial 12-04-2017
Sample Source: WA Test Type Reference Standard Results Spe Penetration at 25.0°C (p.u) AS 2341.12 16 11 Softening point AS2341.18 73 50 Viscosity at 60°C (Pa.s) AS2341.2 19032 Mi Loss on heating (%) AGPT/T103 0.0 Mi Retained penetration (%) ^{1,2} AS 2341.12 87 Mi Increase in softening point after RTFO ¹ AS 2341.10, AS 2341.18 8 Mi Viscosity @ 135.0°C (Pa.s) AS2341.4* 2.92 Mi Insolubles in Toluene (%) AS 2341.10, AS 2341.4* 8 Mi Viscosity @ 135.0°C (Pa.s) AS 2341.10, AS 2341.2 113988 4 Viscosity at 60°C after RTFO AS 2341.10, AS 2341.2 113988 4 Viscosity at 60°C Test Conditions Spaid Viscometer Model DVI+ Shear Rate (1/s) 0.027 13 5 6 Viscosity @ 60°C Post RTFO Test Conditions Spindle Model Number SC 7 Shear Rate (1/s) 0.022 </th <th>Sample Description:</th> <th>EME</th> <th>Client Address:</th> <th>Downer, Quarry F</th> <th>WA Road</th>	Sample Description:	EME	Client Address:	Downer, Quarry F	WA Road
Test TypeReference StandardResultsSpectrumPenetration at 25.0°C (p.u)AS 2341.121611Softening pointAS 2341.187350Viscosity at 60°C (Pa.s)AS2341.219032MiLoss on heating (%)AGPT/T1030.0MiRetained penetration (%) ^{1.2} AS 2341.1087MiIncrease in softening point after RTFO ¹ AS 2341.1087MiViscosity @ 135.0°C (Pa.s)AS2341.4*2.92MiInsolubles in Toluene (%)AS 2341.180.67MiPenetration Index ^{1.3} -0.830.67Viscosity at 60°C after RTFOAS 2341.101139880.67Viscosity at 60°C after RTFOAS 2341.105990.027Viscosity @ 60°C Post RTFO Test ConditionsSpindle Model NumberSCShear Rate (1/s)0.0220.0220.022	Sample Source:	WA		Obsticito	, which the
Penetration at 25.0°C (p.u) AS 2341.12 16 11 Softening point AS2341.18 73 50 Viscosity at 60°C (Pa.s) AS2341.2 19032 Mi Loss on heating (%) AGPT/T103 0.0 Mi Retained penetration (%) ^{1,2} AS 2341.10, AS 2341.12 87 Mi Increase in softening point after RTFO ¹ AS 2341.10, AS 2341.18 8 Ni Viscosity @ 135.0°C (Pa.s) AS2341.4* 2.92 Mi Insolubles in Toluene (%) AS 2341.10, AS 2341.18 0.67 Mi Penetration Index ^{1,3} - 0.83 0.67 Mi Viscosity at 60°C after RTFO AS 2341.10 113988 0.67 Mi Viscosity at 60°C after RTFO AS 2341.10 599 0.83 0.67 Mi Viscosity @ 60°C Test Conditions Spindle Model Number 500 0.027 113988 0.67 Mi Viscosity @ 60°C Post RTFO Test Conditions Spindle Model Number 500 0.022 135 0.022 0.022 0.023 0.023	Test	Туре	Reference Standard	Results	Spec Limit
Softening pointAS2341.187355Viscosity at 60°C (Pa.s)AS2341.219032MilLoss on heating (%)AGPT/T1030.0MilRetained penetration (%) ^{1,2} AS 2341.10, AS 2341.1287MilIncrease in softening point after RTFO ¹ AS 2341.10, AS 2341.188NilViscosity @ 135.0°C (Pa.s)AS2341.4*2.92MilInsolubles in Toluene (%)AS 2341.80.67MilPenetration Index ^{1,3} -0.830.83Viscosity at 60°C after RTFOAS 2341.101139880.67Percent increase in viscosity at 60°C after RTFOAS 2341.105990.027Viscosity @ 60°C Test ConditionsBrookfield Viscometer ModelDVII + Temperature (°C)113Shear Rate (1/s)0.0220.0220.0220.022	Penetration	at 25.0°C (p.u)	AS 2341.12	16	15 - 25
Viscosity at 60°C (Pa.s) AS2341.2 19032 Mi Loss on heating (%) AGPT/T103 0.0 Mi Retained penetration (%) ^{1.2} AS 2341.10, AS 2341.12 87 Mi Increase in softening point after RTFO ¹ AS 2341.10, AS 2341.18 8 Mi Viscosity @ 135.0°C (Pa.s) AS2341.4* 2.92 Mi Increase in softening point after RTFO ¹ AS 2341.8 0.67 Mi Insolubles in Toluene (%) AS 2341.10 AS 2341.2 Mi Viscosity at 60°C after RTFO AS 2341.10 113988 Mi Viscosity at 60°C after RTFO AS 2341.10 599 Mi AS2341.2 Viscosity @ 60°C Test Conditions Brockfield Viscometer Model DVII + Shear Rate (1/s) 0.022 Spindle Model Number SC Shear Rate (1/s) 0.022 Rotational Speed (rpm) Mi	Soften	ing point	AS2341.18	73	56 - 72
Loss on heating (%)AGPT/T1030.0MiRetained penetration (%) ^{1.2} AS 2341.10, AS 2341.10, AS 2341.10, AS 2341.1887MiIncrease in softening point after RTFO ¹ AS 2341.10, AS 2341.188MiViscosity @ 135.0°C (Pa.s)AS2341.4*2.92MiInsolubles in Toluene (%)AS 2341.80.67MiPenetration Index ^{1.3} -0.830.67Viscosity at 60°C after RTFOAS 2341.101139880.67Percent increase in viscosity at 60°C after RTFOAS 2341.105990.027AS2341.2 Viscosity @ 60°C Test ConditionsShear Rate (1/s)0.0270.022NiViscosity @ 60°C Post RTFO Test ConditionsSpindle Model NumberSCShear Rate (1/s)0.0220.022Rotational Speed (rpm)0.021	Viscosity a	60ºC (Pa.s)	AS2341.2	19032	Min 900
AS 2341.10, AS 2341.12 87 M Increase in softening point after RTFO ¹ AS 2341.12 87 M Viscosity @ 135.0°C (Pa.s) AS 2341.10, AS 2341.18 8 M Viscosity @ 135.0°C (Pa.s) AS 2341.4* 2.92 M Insolubles in Toluene (%) AS 2341.8 0.67 M Penetration Index ^{1.3} - 0.83 - Viscosity at 60°C after RTFO AS 2341.10 113988 - Percent increase in viscosity at 60°C after RTFO AS 2341.10 599 - AS2341.2 Viscosity @ 60°C Test Conditions Brookfield Viscometer Model DVII + Shear Rate (1/s) 0.027 - 13 Shear Rate (1/s) 0.022 Rotational Speed (rpm) -	Loss on F	eating (%)	AGPT/T103	0.0	Max 0.5
AS 2341.12 AS 2341.10, Increase in softening point after RTFO ¹ AS 2341.10, 8 N Viscosity @ 135.0°C (Pa.s) AS 2341.4* 2.92 M Insolubles in Toluene (%) AS 2341.4* 2.92 M Penetration Index ^{1.3} - 0.83 0.67 M Viscosity at 60°C after RTFO AS 2341.10 113988 0.67 M Percent increase in viscosity at 60°C after RTFO AS 2341.10 113988 0.67 M AS2341.2 Viscosity @ 60°C Test Conditions AS 2341.10 599 0.027 0.027 Viscosity @ 60°C Post RTFO Test Conditions Spindle Model Number SC SC Rotational Speed (rpm) SC	Retained per	netration (%) ^{1,2}	AS 2341.10,	87	Min 55
AS 2341.10 AS 2.91.10 Viscosity @ 135.0°C (Pa.s) AS 2341.4* 2.92 M Insolubles in Toluene (%) AS 2341.4* 2.92 M Penetration Index ^{1.3} 0.67 Mi Viscosity at 60°C after RTFO AS 2341.10 113988 Percent increase in viscosity at 60°C after RTFO AS 2341.2 113988 AS2341.2 Viscosity @ 60°C Test Conditions Shear Rate (1/s) 0.027 Viscosity @ 60°C Post RTFO Test Conditions Spindle Model Number SC Shear Rate (1/s) 0.022 Rotational Speed (rpm) SC	Increase in softenii	ng point after RTFO ¹	AS 2341.12 AS 2341.10, AS 2341.18	8	Max 8
Insolubles in Toluene (%) AS 2341.8 0.67 Maximum constraints Penetration Index ^{1.3} - 0.83 0.67 Maximum constraints Viscosity at 60°C after RTFO AS 2341.10 AS 2341.2 113988 0.67 Maximum constraints Percent increase in viscosity at 60°C after RTFO AS 2341.10 599 0.027 AS2341.2 Viscosity @ 60°C Test Conditions Brookfield Viscometer Model DVII + Temperature (°C) 113 Viscosity @ 60°C Post RTFO Test Conditions Spindle Model Number SC Shear Rate (1/s) 0.022 Rotational Speed (rpm) 0.023	Viscosity @	135.0°C (Pa.s)	AS2341.16 AS2341.4*	2.92	Min 0.6
Penetration Index ^{1.3} - 0.83 Viscosity at 60°C after RTFO AS 2341.10 113988 Percent increase in viscosity at 60°C after RTFO AS 2341.2 599 AS2341.2 Viscosity @ 60°C Test Conditions Shear Rate (1/s) 0.027 Viscosity @ 60°C Post RTFO Test Conditions Brookfield Viscometer Model DVII + Temperature (°C) Shear Rate (1/s) 0.022 Rotational Speed (rpm) Stational Speed (rpm)	Insolubles ir	Toluene (%)	AS 2341.8	0.67	Max 1.0
Viscosity at 60°C after RTFO AS 2341.10 AS 2341.2 113988 Percent increase in viscosity at 60°C after RTFO AS 2341.10 599 AS2341.2 Viscosity @ 60°C Test Conditions AS2341.4 Viscosity Test Conditions Shear Rate (1/s) 0.027 Temperature (°C) 113 Viscosity @ 60°C Post RTFO Test Conditions Spindle Model Number SC Shear Rate (1/s) 0.022 Rotational Speed (rpm) SC	Penetratio	on Index ^{1,3}	-	0.83	-
AS 2341.2 AS 2341.10 599 AS2341.2 Viscosity @ 60°C Test Conditions AS 2341.4 Viscosity Test Conditions Shear Rate (1/s) 0.027 Viscosity @ 60°C Post RTFO Test Conditions Spindle Model Number Shear Rate (1/s) 0.022	Viscosity at 60)°C after RTFO	AS 2341.10	113988	-
AS2341.2 Viscosity @ 60°C Test Conditions AS2341.4 Viscosity Test Conditions Shear Rate (1/s) 0.027 Viscosity @ 60°C Post RTFO Test Conditions Brockfield Viscometer Model DVII + Shear Rate (1/s) 0.022 12 Shear Rate (1/s) 0.022 Rotational Speed (rpm) 5	Percent increase in viso	osity at 60°C after RTFO	AS 2341.10	599	-
AS2341.2 Viscosity @ 60°C Test Conditions AS2341.4 Viscosity Test Condition Shear Rate (1/s) 0.027 Brookfield Viscometer Model DVII + Viscosity @ 60°C Post RTFO Test Conditions Spindle Model Number SC Shear Rate (1/s) 0.022 Rotational Speed (rpm) 0.027					
Shear Rate (1/s) 0.027 Viscosity @ 60°C Post RTFO Test Conditions Brookfield Viscometer Model DVII + Shear Rate (1/s) 0.022 Spindle Model Number SC Rotational Speed (rpm) Stational Speed (rpm) Stational Speed (rpm) Stational Speed (rpm)	AS2341.2 Viscosity @ 6	0°C Test Conditions	AS2341.4 Visc	cosity Test Co	onditions
Viscosity@ 60°C Post RTFO Test Conditions Spindle Model Number SC Shear Rate (1/s) 0.022 Rotational Speed (rpm) St	Shear Rate (1/s)	0.027	Brookfield Viscome	eter Model	DVII + Pro, LV
Shear Rate (1/s) 0.022 Rotational Speed (rpm)	Viscosity @ 60°C Post R	TFO Test Conditions	Spindle Model N	(-C) Jumber	SC4-34
	Shear Rate (1/s)	0.022	Rotational Spee	d (rpm)	10
Comments: Sample Tested as Received. 1. Not in scope of accreditation 2. Calculated according to PSTS107 Table 10.2.5 3. Calculated according to PSTS107 10.2.5.1	Comments: Sample Tested as Receive 1. Not in scope of a 2. Calculated acco 3. Calculated acco	id. iccreditation rding to PSTS107 Table 10.2.1 rding to PSTS107 10.2.5.1	5		

Table B 3: EME2 bitumen test report S6800 (Main Roads 20/06/17)

BITUMEN TEST REPORT Report No 17 S6800 Customer : Contract No. / Name : Cocation Supplier Sampling Details Sampling Details Sample Number Client Reference Number Client Refer	/ 1 (Main Roads Western Australia Downer Supplied by Others S6800	Classification Customer Ider EME2 Trial Downer Quarry - Martin Date/s Sampled at 95 tonnes	Page 1 of 15/25 Grade EME2 Binder htification S6800 Tested 20/06/2017
teport No 17 S6800 sustomer : contract No. / Name : ocation upplier ampling Details Sampling Method ample Number lient Reference Number ate Sampled ime Sampled atch Number	/ 1 (Main Roads Western Australia Downer Supplied by Others S6800	Classification Customer Ider EME2 Trial Downer Quarry - Martin Date/s Sampled at 95 tonnes	15/25 Grade EME2 Binder tification S6800 Tested 20/06/2017
ustomer : ontract No. / Name : occation upplier ampling Details Sampling Method ample Number lient Reference Number ate Sampled me Sampled tch Number	Main Roads Western Australia Downer Supplied by Others S6800	Customer Ider EME2 Trial Downer Quarry - Martin Date/s Sampled at 95 tonnes	tification S6800 Tested 20/06/2017
ontract No. / Name : occation upplier ampling Details Sampling Method ample Number lient Reference Number ate Sampled me Sampled atch Number	Downer Supplied by Others S6800	EME2 Trial Downer Quarry - Martin Date/s Sampled at 95 tonnes	Tested 20/06/2017
Sampling Details Sampling Method ample Number litent Reference Number ate Sampled atch Number	Downer Supplied by Others S6800	Downer Quarry - Martin Date/s Sampled at 95 tonnes	Tested 20/06/2017
ocation Supplier Sampling Details Sampling Method Sample Number Client Reference Number Sampled Time Sampled Time Sampled Time Sampled	Downer Supplied by Others S6800	Downer Quarry - Martin Date/s Sampled at 95 tonnes	Tested 20/06/2017
Supplier Sampling Details Sample Number Dient Reference Number Date Sampled Time Sampled Statch Number	Downer Supplied by Others S6800	Date/s Sampled at 95 tonnes	Tested 20/06/2017
Sampling Details Sampling Method Sample Number Client Reference Number Date Sampled Time Sampled Satch Number	Supplied by Others	Sampled at 95 tonnes	
Sampling Method Sample Number Dient Reference Number Date Sampled Satch Number	Supplied by Others	, Tested as Received	
Sample Number Dilent Reference Number Jate Sampled Time Sampled Batch Number	S6800		
Client Reference Number Date Sampled Time Sampled Latch Number	56800		SPECIFICATION
Date Sampled Time Sampled Batch Number	Not Applicable		-
Time Sampled Batch Number	12/04/2017		
Batch Number	5:10 PM		-
	Not Supplied		MRWA Specification 514
ank Number	Not Supplied		1
Test Method	Dynamic Visco	osity - AS 2341.2	Specification*
Dynamic Viscosity at 60°C (Pa.s)			900 Min.
Dynamic Viscosity at 135°C (Pa.s)			0.6 Min.
Test Method	Penetration	- AS 2341.12	Specification*
Penetration at 25°C (pu) 100g, 5	18	127	15 - 25
Penetration at 35°C (pu) sec.			
*Penetration Index	0.97		
Test Method	Matter Insoluble in	Toluene - AS 2341.8	Specification*
Matter Insoluble in Toluene (% mass)			1.0 Max.
Test Method	Cottoning Poi		
	Solitening Pol	nt - AS 2341.18	Specification*
Softening Point (°C)	72.5	nt - AS 2341.18	Specification* 56 - 72
Softening Point (°C) Test Method	72.5 Rolling Thin Film O	nt - AS 2341.18	Specification* 56 - 72 Specification*
Softening Point (°C) Test Method Mass Change (%)	72.5 Rolling Thin Film Or	nt - AS 2341.18 ven Test - AS 2341.10	Specification* 56 - 72 Specification*
Softening Point (*C) Test Method Mass Change (%) AS 2341 2 - Dynamic Viscosity at	72.5 Rolling Thin Film O	nt - AS 2341.18 ///////////////////////////////////	Specification* 56 - 72 Specification* 0.5 Max.
Softening Point (*C) Test Method Mass Change (%) AS 2341.2 - Dynamic Viscosity at 60°C (Pa.s)	72.5 Rolling Thin Film O	nt - AS 2341.18 ///////////////////////////////////	Specification* 56 - 72 Specification* 0.5 Max.
Softening Point (*C) Test Method Mass Change (%) AS 2341.2 - Dynamic Viscosity at 60°C (Pa.s) Ratio of Viscosities Before and	72.5 Rolling Thin Film Or	nt - AS 2341.18 ren Test - AS 2341.10	Specification* 56 - 72 Specification* 0.5 Max.
Softening Point (*C) Test Method Mass Change (%) AS 2341.2 - Dynamic Viscosity at 60°C (Pa.s) Ratio of Viscosities Before and After Treatment at 60°C (%)	72.5 Rolling Thin Film O	nt - AS 2341.18 /en Test - AS 2341.10	Specification* 56 - 72 Specification* 0.5 Max.
Softening Point (°C) Test Method Mass Change (%) AS 2341.2 - Dynamic Viscosity at 60°C (Pa.s) Ratio of Viscosities Before and After Treatment at 60°C (%) AS 2341.18 - Softening Point (°C)	72.5 Rolling Thin Film O	nt - AS 2341.18 //en Test - AS 2341.10	Specification* 56 - 72 Specification* 0.5 Max.
Softening Point (*C) Test Method Mass Change (%) AS 2341.2 - Dynamic Viscosity at 60*C (Pa.s) Ratio of Viscosities Before and After Treatment at 60°C (%) AS 2341.18 - Softening Point (*C) "Increase in Softening Point After	72.5 Rolling Thin Film O	nt - AS 2341.18 ven Test - AS 2341.10	Specification* 56 - 72 Specification* 0.5 Max.
Softening Point (*C) Test Method Mass Change (%) AS 2341.2 - Dynamic Viscosity at 60°C (Pa.s) Ratio of Viscosities Before and After Treatment at 60°C (%) AS 2341.18 - Softening Point (*C) *Increase in Softening Point After RTFO Treatment (*C)	72.5 Rolling Thin Film O	nt - AS 2341.18 ren Test - AS 2341.10	Specification* 56 - 72 Specification* 0.5 Max. 8 Max.
Softening Point (*C) Test Method Mass Change (%) AS 2341.2 - Dynamic Viscosity at 60°C (Pa.s) Ratio of Viscosities Before and After Treatment at 60°C (%) AS 2341.18 - Softening Point (*C) "Increase in Softening Point (*C) "Increase in Softening Point After RTFO Treatment (*C) AS 2341.12 - Penetration at 25°C	72.5 Rolling Thin Film O	nt - AS 2341.18 //en Test - AS 2341.10	Specification* 56 - 72 Specification* 0.5 Max. 8 Max.
Softening Point (°C) Test Method Mass Change (%) AS 2341.2 - Dynamic Viscosity at <u>60°C (Pa.s)</u> Ratio of Viscosities Before and After Treatment at 60°C (%) AS 2341.18 - Softening Point (°C) "Increase in Softening Point After <u>RTFO Treatment (°C)</u> AS 2341.12 - Penetration at 25°C <u>100g. 5 sec. (pu)</u>	72.5 Rolling Thin Film O	nt - AS 2341.18 /en Test - AS 2341.10	Specification* 56 - 72 Specification* 0.5 Max. 8 Max.

Accredited for compliance with ISO/IEC 17025 - Testing ACCREDITATION No. 1989 SITE No. 1982

Table B 4: EME2 bitumen test report S6799 (Main Roads 22/06/17)

			MESTERN AUSTRALIA ABN: 50 860 676 021
BITUMEN TEST REPORT			Page 1 of 1
Report No 17 Se	799 / 1 Classif	fication 15/	25 Grade EME2 Binder
Customer :	Main Roads Western Australia	Customer Identificat	ion \$6799
Contract No. / Name :		EME2 Trial	
Leastien	Da	Lines Overse Matin	
Location	-	wher quarry - martin	
Supplier	Downer	Date/s Teste	d 21-22/06/2017
Sampling Details	Sa	ampled at 40 tonnes	
Sampling Method	Supplied by Others, Test	ted as Received	
0	00700		SPECIFICATION
Sample Number	S6799 Not Applicable		
Date Sampled	12/04/2017		
Time Sampled	4:50 PM		MRWA Specification 514
Batch Number	Not Supplied		interve opecinication of t
Tank Number	Not Supplied		
Test Method	Dynamic Viscosity -	AS 2341.2	Specification*
Dynamic Viscosity at 60°C (Pa	s) 14781		900 Min.
Dynamic Viscosity at 135°C (Pa	.s) 2.69		0.6 Min.
Test Method	Penetration - AS	2341.12	Specification*
Penetration at 25°C (pu) 100	J, 5 18		15 - 25
Penetration at 35°C (pu)	35		
*Penetration Index	1.01		
Test Method	Matter Insoluble in Tolue	ene - AS 2341.8	Specification*
Matter Insoluble in Toluene (% mass)	0.1		1.0 Max.
Test Method	Softening Point - A	S 2341.18	Specification*
Softening Point (°C)	73.0		56 72
Solitening Point (C)	73.0		50-72
Test Method	Rolling Thin Film Oven Te	est - AS 2341.10	Specification*
Mass Change (%)	-0.04		0.5 May
AS 2341.2 - Dynamic Viscosity	at 47924		0.0 max.
60°C (Pa.s) Ratio of Viscosities Before an	d 324		
After Treatment at 60°C (%)	024		
AS 2341.18 - Softening Point (Increase in Softening Point Af	U) 78.5		
RTFO Treatment (°C)	6		8 Max.
AS 2341.12 - Penetration at 25 100g, 5 sec. (pu)	15		
*Retained Penetration (pu)	87		55 Min.
* Denotes tests or calculations th Comments / Distribution Reports TRIM 16/4441	at are not covered by our NATA Scope of Acc	Approved Signatory:	Project Officer
D	UN D4 4#20088	Name: Date:	Mark Hopgood 22/06/2017
Locument: /1/05/2341.2 Issue 22/03/2017 Ti	IM.U 198029288		Main Roads Western Australia Materials Engineering Branch

Accredited for compliance with ISO/IEC 17025 - Testing ACCREDITATION No. 1989 SITE No. 1982

Table B 5: EME2 mix design test report S6797 (page 1)

DENSE GRADED ASPHALT TEST REPORT Page 1 of 3 EME2 Trial Field No: Not Applicable 17 S6797 / 1 Contract No: Report: 12/04/2017 Customer: Main Roads Western Australia Date Sampled: 12/04/2017 Date Tested: Road: Not Applicable Sample Source: Downer - Martin Mix Type: DG14 EME2 Lot Number: Not Applicable Sampled by Downer at 35.29 Tonnes Sample Location: Time Sampled 04:34 PM | Temperature 181.7°C Sampling Details: SAMPLING PROCEDURES FOR ASPHALT WA 701.1 Sampling Method: Preparation Method: PREPARATION OF ASPHALT FOR TESTING WA 705.1 S6797 Sample No. Not Applicable Reference No. BITUMEN CONTENT AND PARTICLE SIZE DISTRIBUTION OF ASPHALT:CENTRIFUGE METHOD WA 730.1 % Passing **SPECIFICATION*** Seive Size mm 100 100 26.50mm 100 100 19 00mm 13.20mm 100 94 - 100 82 75 - 89 9 50mm 61 6.70mm 60 - 74 4.75mm 49 45 - 59 32 30 - 40 2.36mm 21.9 19 - 29 1.18mm 15.3 13 - 21 0.600mm 10.3 0.300mm 8 - 16 0.150mm 6.9 6 - 11 4.6 3.8 - 6.8 0.075mm **Bitumen Content %** 6.0 MAXIMUM DENSITY : RICE DENSITY WA 732.2 Maximum Density t/m³ BULK DENSITY AND VOID CONTENT WA 733.1 Bulk Density t/m³ % Air Voids % VMA % VFB STABILITY AND FLOW : MARSHALL METHOD WA 731.1 TEMPERATURE @ COMPACTION °C NUMBER OF BLOWS kN Stability Flow mm COMMENTS/DISTRIBUTION: APPROVED SIGNATORY: REPORTS Trim File 16/4441 Mark Hopgood (Project Officer) DATE: 21/04/2017

Document:71/05/730.1 Issue:08/03/2017 TRIM:D14#628103

Accredited for compliance with ISO/IEC 17025 - Testing ACCREDITATION No. 1989 SITE No. 1982

TECHNICAL

Table B 6: EME2 mix design test report S6797 (page 2)

TEST REPORT			WEST	ERN AU	STRALIA
			Page	2 of	3
Report No:	17 S6797 / 1	Reference No:	Not Appli	cable	
Date Sampled:	12/04/2017	Date/s Tested :	12/04/2	017	
Mix Identification:		DG14 EME2			
Road Name/LGA:		Downer - Mart	in		
Project/Contract No :	EME2 Trial	Customer:	Main Roads West	tern Austral	ia
Test Methods	Determination of maximu	m density of asphalt	- Water displaceme	ent method A	S 2891.7.1
Average Maximim Density	/ t/m³	Results 2.501			
NOTES:	Preside paralitation				
COMMENTS/DISTRIBUTION: Reports Trim File 16/4441		Approved S	ignatory	1	
		Name:	Mark	Hopgood	
		Date:	21/	04/2017	
Document:71/05/2891.7.1 Issue:0	08/03/2017 TRIM:D14#630740		MAIN	ROADS Wes	tern Australia
\wedge				Materials	Engineering
NATA Accredited for complia	nce with ISO/IEC 17025 - Testing	1		JJG Pund	ch Laboratory
ACCREDITATION No.	1989 SITE No. 1982			5-9 Colin Ja	mieson Drive
			Tel: (00) 0200	WELSHPO	OL WA 6106
JOMPETENCE			Tel: (08) 9323	4/44 Fax: (0	0) 9323 4766

Table B 7: EME2 mix design test report S6797 (page 3)

			MESTE	nroads
Asphalt Test Report				Page 3 of 3
Report No: 17 S6797 /1	Project:	EME2 Trial		
Lot No: Not Applicable	Date	Sampled: 12/04	2017 DateTeste	d: 12/04/2017
Mix Details: DG14 EME2		Supplied By:	Downer	
Location: Downer - Ma	rtin			
Sampling Details: Sampled by Time Sample	Downer at 35.29 Tonnes ed: 04:34 PM / Temperature: 18	1.7°C		
Sampled in Accordance	with: WA 701.1 Sampling ar	d Storage of Aspha	lt	
Tested in Accordance w	ith: AS 2891.11 Degree of	Particle Coating		
	Degree of Particle Coating (%)	100		
Sampled in Accordance v	vith: WA 701.1 Sampling an	d Storage of Aspha	t	
Tested in Accordance w	ith: AS 2891.10 Moisture C	ontent of Asphalt		
	Moisture Content (%)	0.0		
Comments / Distribution		Approved S	Signatory:	4
Reports Frim File 16/4441			\bigotimes	1
		Date	Mark Hopgood (F	roject Officer)
ocument:71/05/2891.11 Issue:08/03/2017	TRIM:D15#225134	Date	2 110412	
Accredited for comp	liance with ISO/IEC 17025 - Testing		Main R Materi	oads Western Australi als Engineering Branc
	No. 1989 SITE No. 1982		-	JJG Punch Laborator
TECHNICAL			5- V	VELSHPOOL WA 610
			Tel: 08 9323 4	744 Fax: 08 9323 476

Table B 8: EME2 mix design test report S6798 (page 1)

DENSE GRADED ASPHALT TEST REPORT Page 1 of 2 Report: 17 S6798 / 1 EME2 Trial Contract No: Field No: Not Applicable 12/04/2017 Date Sampled: Date Tested: 12/04/2017 Customer: Main Roads Western Australia Road: Not Applicable Sample Source: Downer - Martin Mix Type: DG14 EME2 Lot Number: Not Applicable Sample Location: Sampled by Downer at 73.86 Tonnes Sampling Details: Time Sampled 04:57 PM | Temperature 177.9°C Sampling Method: SAMPLING PROCEDURES FOR ASPHALT WA 701.1 PREPARATION OF ASPHALT FOR TESTING WA 705.1 Preparation Method: S6798 Sample No. Not Applicable Reference No. BITUMEN CONTENT AND PARTICLE SIZE DISTRIBUTION OF ASPHALT:CENTRIFUGE METHOD WA 730.1 Seive Size mm % Passing SPECIFICATION * 26.50mm 100 100 19.00mm 100 100 13.20mm 98 94 - 100 9.50mm 81 75 - 89 64 6.70mm 60 - 74 51 4.75mm 45 - 59 2.36mm 33 30 - 40 22.5 1.18mm 19 - 29 0.600mm 16.1 13 - 21 11.1 0.300mm 8 - 16 0.150mm 7.8 6 - 11 0.075mm 5.4 3.8 - 6.8 Bitumen Content % 6.0 MAXIMUM DENSITY : RICE DENSITY WA 732.2 Maximum Density t/m³ BULK DENSITY AND VOID CONTENT WA 733.1 t/m³ Bulk Density % Air Voids % VMA % VFB STABILITY AND FLOW : MARSHALL METHOD WA 731.1 TEMPERATURE @ COMPACTION °C NUMBER OF BLOWS Stability kN Flow mm COMMENTS/DISTRIBUTION: APPROVED SIGNATORY: REPORTS Trim File 16/4441 Mark Hopgood (Project Officer) DATE: 21/04/2017

Document:71/05/730.1 Issue:08/03/2017 TRIM:D14#628103

Accredited for compliance with ISO/IEC 17025 - Testing ACCREDITATION No. 1989 SITE No. 1982

Table B 9: EME2 mix design test report S6798 (page 2)

			WES	ain TERN	TO AUS'	ads
TEST REPORT			Page	2	of	2
Report No:	17 S6798 / 1	Reference No:	Not App	licable		_
Date Sampled:	12/04/2017	Date/s Tested :	12/04/	2017		_
Mix Identification:	DG14 EME2					
Road Name/LGA:	Downer - Martin					
Project/Contract No :	EME2 Trial	Customer:	Main Roads We	stern Au	stralia	
		8.				
Test Methods	Determination of maximu	m density of aspha	t - Water displacer	nent met	od AS	2891.7.1
		Results				
Average Maximim Density	t/m³	2.498				
NOTES:		Sector 1984				
COMMENTS/DISTRIBUTION: Reports Trim File 16/4441		Approved	Signatory	V	1	
		Name:	Ma	rk Hopgoo	d	•
		Function: Date:	Pro 2	ject Offic 1/04/2017	er	
Document:71/05/2891.7.1 Issue:0	8/03/2017 TRIM:D14#630740		MAI	N ROADS	Weste	rn Australia
^				Ma	terials I	Engineering
Accredited for complian	nce with ISO/IEC 17025 - Testing	g		JJG	Punch	Laboratory
ACCREDITATION No.	1989 SITE No. 1982			5-9 Co	lin Jam	ieson Drive
CREDITED FOR				WELS	SHPOO	L WA 6106
ECHNICAL			Tel: (08) 932	3 4744 F	ax: (08)	9323 476

Table B 10: Core test report S6801 (Main Roads)

					E MESTE	inroads	
ASPHA	LT CORE TEST	REPORT					
Report No	p: 17 S6801 /1	Contra	ect No / Name:		EME2 Trial		
ot No:	Not Applicabl	e Date Laid:	12/04/2017	Date Cored:	13/04/2017		
Asphalt T	уре:	DG14 EME2		Supplied / Laid By: Downer			
ocation: Downer Quarry - Martin							
ampled ested in ested in ested in	in accordance with WA accordance with WA 7 accordance with AS 28 accordance with AS 3	701.1 Sampling a 05.1 Preparation o 891.9.2 Determinat 2891.8 Voids and V	nd storage of asph f asphalt for testing ion of Bulk Density /olumetric Properti	alt of Compacted Asp es of compacted as	halt - Presaturation phalt mixes	Method	
Co	re Chainage	Transverse *	Thickness (mm) (WA 705.1)	Bulk Density (t/m ³)	Water Absorbtion (%)	Air Voids (%) (AS 2891.8)	
				(AS 2891.9.2)	(AS 2891.9.2)		
1	5	5.1	104	2.403	0.2	4.2	
2	14	6.2	100	2.415	0.2	3.7	
3	20	0.1	90	2.392	0.2	3.4	
- 4	40	7.1	98	2.387	0.2	4.8	
6	48	47	87	2.366	0.4	5.6	
7	6	3.2	91	2.411	0.2	3.8	
8	14	2.4	94	2.415	0.2	3.7	
9	17	1.0	93	2.370	0.3	5.5	
10	23	2.0	84	2.396	0.2	4.4	
1	1 28	0.8	92	2.378	0.3	5.1	
12	2 31	2.1	78	2.314	1.5	7.7	
		Mean	95	Mean (%)	0.3	4.7	
				5	Standard Deviation	1.188	
				Acceptance Co	onstance (k factor)	0.59	
		Upper Characteristic In-situ Air Voids (%) 5.4					
			Lov	wer Characteristic In	-situ Air Voids (%)	4.0	
* metre	es right of left edge						
Maximur	n Theroetical Density (t/m ³) 2.507	from Report/s MR	WA S6797 / 98 & D	owner NA25128 / 2	9	
Comments Trim File 16/4441				Approved Si	Approved Signatory:		
Note: s factor derived from Engineering Road Note 8 - Other Roads				Date	Mark Hopgood (Project Officer) Date 21/04/2017		
ocument:71	/05/733.1C Issue:08/03/2017 T	RIM:D17#181690				Deede Week	
Accredited for compliance with ISO/IEC 17025 - Testing ACCREDITATION No. 1989 SITE No. 1982				Main Mate	Roads Western Austra erials Engineering Bran JJG Punch Laborat 5-9 Colin Jamieson Dr		
TECHNICAL COMMETERE				WELSHPOOL WA 610 Tel: 08 9323 4744 Fax: 08 9323 476			

Table B 11: Resilient modulus and bulk density test report S6850 (page 1)

		ŧ	mainroads				
TEST REPORT			ABN: 50 860 676 021				
Report No:	17 86850 / 1	Reference No	Not Applicable				
Date Sampled	12/04/2017	Date/s Tested	12-21/04/2017				
Local Govt Authority:		Not Applicable					
Road Name	Not Applicable						
Project/Contract No :	WARRIP EME2 Trial	Customer	Main Roads WA				
Asphalt mixture details:		14mm Dense Grade Asphalt					
Grading Type:	Dense Non	ninal Mix Size:	14mm				
Binder Content: 6.0	% Type EME2	Binder Details reference s	sample N°: S6798				
Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1							
Dotorminato	in of the maximum bollony of the						
	Maximum Density referen	kimum Density t/m³	2.498				
	maximum Density referen		00130				
	Bulk Density AS 2891	.9.2 / Air Voids AS 2891.8	8				
Specimen Number	Bulk Density (t/m ³)	Water Absorbtion (%) Air Voids (%)				
M1	2.378	0.5	4.8				
M2	2.391	0.8	4.3				
M3	2.382	0.9	4.6				
M4 M5	2.385	0.8	4.5				
	2.000	0.0	7.0				
	Mean 2.385	0.7	4.5				
Comments / Distribution		Approved Signato	ny Al				
REPORTS							
		Name Mark I	Hopgood				
		Function Project	ot Officer				
		Date 4/05/2	017				
Document:71/05/2891.13.1 issu	e:08/03/2017 TRIM:D14#630733		Main Roads Western Australia				
	moliones with ISO/IEC 47025 Tartin		Materials Engineering				
NATA ACCREDITATIO	No. 1989 SITE No. 1982	d	JJG Hunch Laboratory 5-9 Colin Jamieson Drive				
	110. 1000 011m 110 1006		WELSHPOOL WA 6106				
			Tel: 08 9323 4744 Fax: 08 9323 4766				

Table B 12: Resilient modulus and bulk density test report S6850 (page 2)

				MESTER	nroads			
TEST DEDODT					ABN 50 860 676 021			
Depend Not	47 00000 / 4		Dofe	man No: Not	Applicable			
Report No:	17 3065071		Refe	Tastad : 42.2				
Date Sampled:	12/04/2017		Date/		1/04/2017			
Local Govt Authority:			Not Appli	cable				
Road Name:		Not Applicable						
Project/Contract No :	WARRIP EMI	Ez I mai	ustomer:	Main Roads west	ern Australia			
Asphalt mixture details			14mm Dense Gr	ade Asphalt				
Grading Type:	Dense	Nominal Mi	k Size:	14	mm			
Binder Content: 6	.0 % Type EM	IE2 Binder	Details reference	sample N°:	S6798			
Sampling Method / Pre	paration: SAMI	PLING PROCEDU	IRES FOR ASPI	HALT AS 2981.1				
Determin	nation of the Resilient	Modulus of Asph	alt - Indirect Te	nsile Method AS/NZS	2891.13.1			
Test conditions: Other properties of th have influenced the r	Standard reference tes le asphalt that may esults	st conditions used						
Asphalt mixing temper	ature (°C)		177.9					
Temperature at compa	ction (°C)		180.1					
Number of Gyratory Cy	vcles		Various					
Pressure in Modulus N	lachine Accuator (kPa)		850					
Start of Conditioning til	me		9:05:00					
Date and Time of test		21	04/2017 1	2:52:00				
Conditioning Time (hor	urs)		1028307.7	в				
Temp after conditionin	q (°C)		25.8					
Date of specimen man	ufacture		12/04/2017	7				
Specimen Number	Core Temperature of Specimen (°C)	Mean Diameter (mm)	Mean Height (mm)	Resilient Modulus of Specimen (MPa)	Coefficient of Variation of Modulus (%)			
M1	26.0	99.5	49.6	6649	1.07			
M3	26.0	99.5	50.0	6467	0.96			
M4	26.0	99.5	49.7	6150	1.01			
				-				
	Mean	99.5	49.8	6,420	1.0			
		AS 28	91.2.2					
Gyratory Angle (°) 2		Number of Cycle	es Various				
Comments / Distributio TRIM 16/4441 REPORTS	ท		Appr Nam Fund Date	Mark Hopgood Project Officer 4/05/2017				
Document 71/05/2891.13.1	Issue:08/03/2017 TRIM:D14#	630733	IDate	M	ain Roads Western Australia			
Accredited fo ACCREDITA	r compliance with ISO/IEC 17 TION No. 1989 SITE No. 198	025 - Testing 2			Materials Engineering JJG Punch Laboratory 5-9 Colin Jamieson Drive WELSHPOOL WA 6106			
TECHNICAL				Tel. 08 93	323 4744 Fax: 08 9323 4766			

		Ŧ	mainro	ads
			ABN. 5 Sheet 3	0 860 676 02 of 4
Report No: 1	7 S6850 / 1	Reference No	Not Applicable	
Date Sampled:	12/04/2017	Date/s Tested	1/05/2017	
Local Govt Authority:		Not Applicab	le	
Road Name:		Not Applicab	le	
Project/Contract No :	WARRIP EME2 Trial	Customer: M	ain Roads Western Aust	ralia
Asphalt mixture details:	14	mm Dense Grade As	phalt EME2	
Grading Type:)ense Nom	inal Mix Size:	14	mm
Binder Content: 6	% Type EME2	Binder Details referend	ce sample N°: \$67	'98
Sampling Method / Preparatio	n: SAMPLING PROCEDUR COMPACTION OF ASP the Maximum Density of Asp	RES FOR ASPHALT A HALT USING A GYRAT halt - Water Displacem	S 2981.1 ORY COMPACTOR - AS 28 tent Method AS 2891.7.1	91.9.2
	Maxi Maximum Density reference	mum Density t/m³	2.498 S6798	
	Bulk Density AS 2891.	.2 / Air Voids AS 289	11.8	
	Temperate	ure at Compaction	Not Recorded	
Specimen Number	Bulk Density (t/m ³)	Water Absorbtion	(%) Air Voids	%)
1	2.426	0.4	2.9	
2	2.427	0.3	2.9	
3	2.420	0.3	3.1	
	2 404			
NA NA	ean2.424	0.3	3.0	
Comments / Distribution RIM 16/4441 REPORTS		Approved Signa	itery .	
		Name Mar Function Proj	k Hopgood ect Officer	
ocument:71/05/2891.13.1 [ssue:08/0	3/2017 TRIM:D14#630733	Date 4/05	5/2017	
	WEUT/ TRIVILD 14#030733		Main Roads West	ern Australi
Accredited for complian	ce with ISO/IEC 17025 - Testing		Materials	Engineering
ACCREDITATION No.	1989 SITE No. 1982		JJG Punc 5-9 Colin. Jor	n Laporator
V			WELSHPOI	DL WA 610
			Tel: 08 9323 4744 Fax: 0	8 9323 476

Table B 13: Resilient modulus and bulk density test report S6850 (page 3)

		ŧ	mainroads						
TEST REPORT			ABN: 50 860 676 02 Sheet 4 of 4						
Report No:	17 S6850 / 1	Reference No:	Not Applicable						
Date Sampled:	12/04/2017	Date/s Tested :	1/05/2017						
Local Govt Authority:		Not Applicable							
Road Name									
Project/Contract No :	WARRIP EME2 Trial	Customer: Main	Roads Western Australia						
Asphalt mixture details:		14mm Danas Crada As							
Asphalt mixture details.		14mm Dense Grade As	sphalt						
Grading Type:	Dense N	lominal Mix Size:	14mm						
Binder Content: 6.0	% Type EME2	Binder Details reference	sample N°: S6798						
Sampling Method / Preparati	on: SAMPLING PROCE	DURES FOR ASPHALT - AS 2	981.1						
Determination o	f the Maximum Density of	Asphalt - Water Displacemen	t Method AS 2891.7.1						
	N Maximum Density refer	laximum Density t/m³	2.498						
			30790						
	Bulk Density AS 28	91.9.3 / Air Voids AS 2891.8							
		Gyratory Cycles	100						
	Temperatu	re at Compaction (°C)	Not Recorded						
Specimen Number	Bulk Doppity (f/m)	3) Air Voide (%)							
1	2.376	4.9							
2	2.370	5.1							
3	2.378	4.8							
	Moon 2 275	10							
	vican 2.375	4.9							
Comments / Distribution TRIM 16/4441		Approved Signato	" A						
REPORTS		No							
		Name Mark I							
		Date 5/04/2	017						
Document:71/05/2891.13.1 Issue:08	3/03/2017 TRIM:D14#630733	0004/2	Main Roads Western Australia						
			Materials Engineerin						
			JJG Punch Laborator						
			5-9 Colin Jamieson Driv						
			WELSHPOOL WA 610						

Table B 14: Resilient modulus and bulk density test report S6850 (page 4)

Tel: 08 9323 4744 Fax: 08 9323 4766

Table B 15: TSR and bulk density test report S6851 (page 1)

									nain	roa	d	Ś
TEST REF	PORT								A Sheet	BN: 50 86	60 67	6 021 3
Report No	:		17 S6851 /	1			Refere	nce No:	Not Applie	cable		-
Date Sam	pled:		12/04/2017	,		ſ	Date/s	Tested :	12/4-3/5/2	2017		
Sample N	umber:		S6797			-						
Local Gov	t Authority	N	of Applicat	ole	Road N	ame [.]		Not At	nlicable			
Project/Co	ntract No :		WARRI		rial C	ustomer		Main Roads	Western A	uetralia		
Asphalt mi	ivture detail	e.	TANN		1	Amm Den	eo Gra	de Aenhalt	Western A	usuana		
Cooding T		5.	Danaa		N	aminal Miv	Se Gra					
Grading T	ype:	•	Dense	ENICO.		ominal Mix	Size:	14 mm				
Binder Col	ntent: 6	.0	% Type	EME2	Binder D	etalis reter	ence s	ample N*:	56	/9/		
Sampling	Method / Pr	epara	ition:	SAMPLIN	G PROCED	URES FO	R ASP	HALT AS 289	1.1.1			
<u> </u>	AG:	PT/T2	32 STRIP	PING POT	ENTIAL OF	ASPHAL	T - TEN	ISILE STRENG	TH RATIO			
Test cond	litions:	Stan	dard refere	nce test co	nditions use	d						
Specime	n Number	% A	ir Voids (A	S 2891.8)	Degree of	Saturatio	п (%)	Swell (%)	Tensile S	Strengtl	h (ki	Pa)
- V	/et [5		7.8		<u> </u>	70.6	_	44		1457		_
T	16		7.8			65.8		4.8		1366		_
Г	7		7.8		1	79.1		4.5		1378	_	
Me	ean		7.8			71.8		4.6		1400		
D	ry		7.0							1010		
	1		7.8		_	_				1219		
г Г	5 74		8.0							1292		-
Me	ean		7.9			••••••				1271		-
						Tensi	le Stre	ngth Ratio (%		110		
				Visual Ass	essment o	n Degree (of Strip	ping				
				(One Wet	Sample and	One Dry Sa	ample O	nly)				
Type o	of Aggrega	te	Nil	Minimal	Moderate	Severe	<u> </u>	C	omments	41	-	-
vvet	Coars	e	x	<u> </u>			<u> </u>	Several crac	ked, appear	s masti s masti	ic ic	-
Drv	Coars	e		x				Few cracke	d. appears	mastic		-
	Fine	-		x				Several crac	ked, appear	s masti	ic	
Observa	ations											
					AS 28	91.2.2						
Gyratory A	ngle (°)		2.0		Number of	Cycles		Various	-			
Comments	s / Distributi 441	on					Appro	ved Signatory				
REPORTS	6							2		``		
							Name		Mark Hop	good		
							Funct	ion	Project Of	ficer		
				D4 4800000			Date		4/05/20	17		
Document:71	1/05/1232 Issu	ie:08/0	3/2017 TRIM:	D14#630776					Main Road	is Wester	n Aus	ering
\sim	Accredited for	r come	liance with IS	O/IEC 17025	- Testing				UL LL	G Punch	Labor	ratorv
NATA	ACCREDITA	TION	No. 1989 SITE	No. 1982					5-9 C	olin Jami	eson	Drive
\sim									WE	SHPOOL	. WA	6106
TECHNICAL								Tel	: 08 9323 4744	Fax: 08	9323	4766

Table B 16: TSR and bulk density test report S6851 (page 2)

		Ŧ	mainroads							
TEST REPORT		•	ABN: 50 860 676 02 Sheet 2 of 3							
Report No:	17 S6851 / 1	Reference No:	Not Applicable							
Date Sampled:	12/04/2017	/04/2017 Date/s Tested 28/4 - 1/5/2017								
Local Govt Authority:		Not Applicable								
Road Name:		Not Applicable								
Project/Contract No :	WARRIP EME2 Trial	Customer: Mai	n Roads Western Australia							
Asphalt mixture details:		14mm Dense Grade A	sphalt							
Grading Type:	Dense Non	ninal Mix Size:	14 mm							
Binder Content: 6.0	% Type EME2	Binder Details reference	sample N°: \$6797							
Sampling Method / Preparat	ion: SAMPLING PROCEDU	RES FOR ASPHALT AS 2	2981.1 RY COMPACTOR - AS 2891.2.2							
Determination of	of the Maximum Density of As	phalt - Water Displaceme	nt Method AS 2891.7.1							
	Max Maximum Density referen	timum Density t/m³ ce Sample Number	2.501 \$6797							
	Bulk Density AS 2891.	9.2 / Air Voids AS 2891.8								
	Temperature	Gyratory Cycles	100							
Specimen Number	Bull Density (the 3)									
Specimen Number	2.422	0.3	<u>Air Volds (%)</u> 3.1							
2	2.420	0.3	3.2							
3	2.435	0.4	2.6							
	Mean 2.426	0.3	3.0							
Comments / Distribution TRIM 16/4441 REPORTS		Approved Signate Name Mark Function Proje Date 4/05/7	Hopgood ct Officer 2017							
Document:71/05/2891.13.1 Issue:0	8/03/2017 TRIM:D14#630733		Main Roads Western Australi							
	inner with ISO/IEO 47005 T		Materials Engineerin							
NATA ACCREDITATION N	ance with ISO/IEC 17025 - Testing		JJG Punch Laborator							
AUCKEDITATION N	0. 1969 STE NO. 1982		S-S Colin Jamieson Driv							
ACCREDITED FOR			Tel: 08 9323 4744 Fax: 08 9323 476							

Table B 17: TSR and bulk density test report S6851 (page 3)

		-1	western australia
TEST REPORT			ABN: 50 860 676 021 Sheet 3 of 3
Report No: 17	S6851 / 1	Reference N	p: Not Applicable
Date Sampled: 12	2/04/2017	Date/s Tested	28/04/2017
Local Govt Authority:		Not Applica	ble
Road Name:		Not Applica	ble
Project/Contract No : V	VARRIP EME2 Trial	Customer:	Main Roads Western Australia
Asphalt mixture details:		14mm Dense Grad	e Asphalt
Grading Type: De	nse N	lominal Mix Size:	14 mm
Binder Content: 6.0 %	Type EME2	Binder Details refere	nce sample N°: \$6797
Sampling Method / Preparation:		DURES FOR ASPHALT -	AS 2981.1
Determination of th	e Maximum Density of	Asphalt - Water Displace	ment Method AS 2891.7.1
	Maximum Density refer Bulk Density AS 28	ence Sample Number	\$6797 1.8
	Temperatu	Gyratory Cycles	100 177
Specimen Number	Bulk Density (t/m	³) Air Voids (%	3
1	2.358	5.7	
2	2.372	5.1	
3	2.387	4.6	
Ma	an 2 272		
ine ine	an <u>2.012</u>		
Comments / Distribution TRIM 16/4441 REPORTS		Approved Sig Name M Function Pr Date 5/	ark Hopgood oject Officer 04/2017
Document:71/05/2891.13.1 Issue:08/03	/2017 TRIM:D14#630733	I	Main Roads Western Australia Materials Engineering JJG Punch Laboratory 5-9 Colin Jamieson Drive

WELSHPOOL WA 6106 Tel: 08 9323 4744 Fax: 08 9323 4766

0.75

3.7

1.8

Maximum 5.5

APPENDIX C IN SITU DENSITY, THICKNESS AND AIR VOIDS RESULTS OF ASPHALT

Core no.	Chainage	Transverse metres right of left edge	Thickness (mm)	Bulk density (t/m³)	Water absorption (%)	Air voids (%)
1	21 058	0.9	107	2.462	0.2	1.3
2	21 088	1.0	106	2.404	0.2	3.7
3	21 142	0.6	118	2.449	0.1	1.8
4	21 167	5.4	103	2.364	0.3	5.3
5	21 186	3.3	118	2.446	0.1	2.0
6	21 228	5.2	99	2.449	0.1	1.8
7	21 261	3.8	134	2.397	0.2	3.9
8	21 305	2.7	112	2.436	0.1	2.3
9	21 312	4.1	120	2.454	0.1	1.7
10	21 346	1.1	99	2.413	0.2	3.3
		Mean	111	2.427	0.2	2.7
					Standard deviation	1.266

Table C 1: Report S6825 core density Lift 1 Chainage 21050 – 21375 (sampled 28/04/17)

Acceptance Constance (k factor)

Upper characteristic in situ air void (%)

Lower characteristic in situ air void (%)

Main Roads Specification 514 (Draft)

Source: Based on laboratory data from Main Roads

Table C 2: Core density LR1 and LR2 Lift 1 lower and upper half Chainage 21050 – 21375

Report no.	S6845 (lower half)		S6844 (up	per half)
Core no.	Bulk density (t/m³)	Air voids (%)	Bulk density (t/m³)	Air voids (%)
1	2.437	2.3	2.437	2.3
2	2.375	4.8	2.422	2.9
3	2.449	1.8	2.445	2.0
4	2.348	5.9	2.382	4.5
5	2.452	1.7	2.438	2.3
6	2.451	1.8	2.444	2.1
7	2.394	4.1	2.405	3.6
8	2.435	2.4	2.438	2.3
9	2.463	1.3	2.444	2.0
10	2.411	3.4	2.417	3.1
Mean	2.422	2.9	2.427	2.7
	Standard deviation	1.530		0.832

Note: Results are the product of cutting the cores from Report S6825 into lower and upper halves. Source: Based on laboratory data from Main Roads.

Core no.	Chainage	Transverse metres right of left edge	Thickness (mm)	Bulk density (t/m³)	Water absorption (%)	Air voids (%)
1	21 058	0.9	157	2.417	0.1	2.9
2	21 088	1.0	100	2.376	0.2	4.6
3	21 142	0.6	100	2.439	0.1	2.0
4	21 167	5.4	108	2.360	0.2	5.2
5	21 186	3.3	101	2.440	0.1	1.9
6	21 228	5.2	94	2.377	0.2	4.5
7	21 261	3.8	92	2.411	0.2	3.1
8	21 305	2.7	89	2.401	0.2	3.5
9	21 312	4.1	94	2.419	0.2	2.8
10	21 346	1.1	110	2.436	0.1	2.1
		Mean	104	2.404	0.2	3.3
		-		•	Standard deviation	1 154

Table C 3: Report S6826 core density Lift 2 Chainage 21050 - 21375 (sampled 28/04/2017)

Acceptance Constance (k factor)

Upper characteristic in situ air void (%)

Lower characteristic in situ air void (%) Main Roads Specification 514 (Draft) 2.4 Maximum 5.5

0.75

4.1

Source: Based on laboratory data from Main Roads.

Table C 4: Core density LR1 and LR2 Lift 2 lower and upper half Chainage 21050 – 21375

Report no.	S6847 (lower half)		S6846 (u	pper half)
Core no.	Bulk density (t/m³)	Air voids (%)	Bulk density (t/m³)	Air voids (%)
1	2.424	2.6	2.408	3.3
2	2.361	5.1	2.389	4.0
3	2.442	1.9	2.432	2.3
4	2.343	5.9	2.361	5.1
5	2.438	2.1	2.433	2.2
6	2.359	5.2	2.382	4.3
7	2.421	2.7	2.400	3.6
8	2.390	4.0	2.377	4.5
9	2.421	2.7	2.408	3.2
10	2.438	2.0	2.432	2.3
Mean	2.404	3.4	2.402	3.5
	Standard deviation	1.499		1.008

Note: Results are the product of cutting the cores from Report S6826 into lower and upper halves. Source: Based on laboratory data from Main Roads.

Core no.	Chainage	Transverse metres right of left edge	Thickness (mm)	Bulk density (t/m³)	Water absorption (%)	Air voids (%)
1	21 135	2.0	120	2.462	0.1	1.2
2	21 158	2.0	112	2.404	0.1	2.1
3	21 165	2.0	116	2.449	0.1	1.8
4	21 185	5.5	91	2.364	0.1	1.9
		Mean	110	2.420	0.1	1.8

Table C 5: Report S6827 core density Lift 1 Chainage 21050 – 21375 (selected sites) (sampled 28/4/17)

Source: Based on laboratory data from Main Roads.

Table C 6: Report S6828 core density Lift 2 Chainage 21050 – 21375 (selected sites) (sampled 28/4/17)

Core no.	Chainage	Transverse metres right of left edge	Thickness (mm)	Bulk density (t/m³)	Water absorption (%)	Air voids (%)
1	21 135	2.0	105	2.435	0.1	2.2
2	21 158	2.0	112	2.394	0.1	3.8
3	21 165	2.0	103	2.417	0.1	2.9
4	21 185	5.5	106	2.402	0.12	3.5
		Mean	106	2.412	0.1	3.1

Source: Based on laboratory data from Main Roads.

Table C 7: Report 17M175 nuclear density LR1 (lane side) Lift 1 Chainage 21050 - 21275 (tested 27/4/17)

Site no.	Chainage	Transverse metres right of left edge	Test depth (mm)	Field density (t/m³)	Air voids (%)
1	21 054	2.8	90	2.374	4.8
2	21 085	1.8	90	2.443	2.1
3	21 119	1.1	90	2.525	-1.2
4	21 134	2.4	90	2.490	0.2
5	21 168	1.4	90	2.359	5.5
6	21 178	0.4	90	2.454	1.6
7	21 209	3.0	90	2.408	3.5
8	21 229	2.1	90	2.414	3.2
9	21 257	1.1	90	2.457	1.5
	•	•	•	Mean	2.4
				Standard deviation	2.135

Standard deviation

0.75

4.0

0.8

Acceptance Constance (k factor)

Upper characteristic in situ air void (%)

Lower characteristic in situ air void (%)

Maximum 5.5 Main Roads Specification 514 (Draft)

Source: Based on laboratory data from Main Roads.

Site no.	Chainage	Transverse metres right of left edge	Test depth (mm)	Field density (t/m³)	Air voids (%)
1	21 154	7.3	90	2.338	6.3
2	21 185	7.8	90	2.396	4.0
3	21 219	7.6	90	2.375	4.8
4	21 234	7.9	90	2.385	4.4
5	21 268	4.9	90	2.369	5.1
6	21 278	0.4	90	2.420	3.0
7	21 309	4.0	90	2.394	4.0
8	21 329	2.1	90	2.370	5.0
9	21 357	1.1	90	2.415	3.2
				Mean	4.4
				Standard deviation	1.014

Table C 8: Report 17M176 nuclear density LR1 (median side) Lift 1 Chainage 21153 – 21365 (tested 27/4/17)

0.75 5.2

3.7

Acceptance Constance (k factor)

Upper characteristic in situ air void (%)

Lower characteristic in situ air void (%)

Main Roads Specification 514 (Draft) Maximum 5.5

Source: Based on laboratory data from Main Roads.

Table C 9: Report 17M177 nuclear density joint LR1 and LR2 Lift 1 Chainage 21125 – 21275 (tested 27/4/17)

Site no.	Chainage	Transverse metres right of left edge	Test depth (mm)	Field density (t/m³)	Air voids (%)
1	21 132	3.5	90	2.193	12.1
2	21 173	3.5	90	2.221	11.0
3	21 199	3.5	90	2.077	16.8
4	21 210	3.5	90	2.201	11.8
5	21 238	3.5	90	2.107	15.6
6	21 250	3.5	90	2.121	15.0

Source: Based on laboratory data from Main Roads.

Site no.	Chainage	Transverse metres right of left edge	Test depth (mm)	Field density (t/m³)	Air voids (%)
1	21 058	0.9	90	2.394	3.8
2	21 088	1.0	90	2.401	3.5
3	21 142	0.6	90	2.442	1.9
4	21 167	5.4	90	2.360	5.2
5	21 186	3.3	90	2.458	1.2
6	21 228	5.2	90	2.361	5.1
7	21 261	3.8	90	2.386	4.1
8	21 305	2.7	90	2.432	2.3
9	21 312	4.1	90	2.444	1.8
10	21 346	1.1	90	2.462	1.1
	-			Mean	3.0
				Standard deviation	1.546

Table C 10: Report 17M178 nuclear density LR1 and LR2 Lift 2 Chainage 21050 – 21375 (tested 28/4/17)

0.75

4.2

1.9

Acceptance Constance (k factor)

Upper characteristic in situ air void (%)

Lower characteristic in situ air void (%)

Main Roads Specification 514 (Draft) Maximum 5.5

Source: Based on laboratory data from Main Roads

Table C 11:	Report 17M179 nuclear	density LR1 and LR2 I	ayer 2 Chainage 21135	- 21186 (selected site) (tested 28/4/17)
			, ,	

Site no.	Chainage	Transverse metres right of left edge	Test depth (mm)	Field density (t/m³)	Air voids (%)
1	21 135	2.0	90	2.410	3.2
2	21 158	2.0	90	2.425	2.6
3	21 165	2.0	90	2.446	1.7
4	21 185	5.5	90	2.384	4.2

Source: Based on laboratory data from Main Roads

Table C 12: Report 17M180 nuclear density joint LR1 and LR2 Layer 2 Chainage 21125 – 21275 (tested 28/4/17)

Site no.	Chainage	Transverse metres right of left edge	Test depth (mm)	Field density (t/m³)	Air voids (%)
1	21 128	3.5	90	2.074	16.7
2	21 155	3.5	90	2.285	8.2
3	21 196	3.5	90	2.243	9.9
4	21 214	3.5	90	2.251	9.6
5	21 239	3.5	90	2.360	5.2
6	21 259	3.5	90	2.409	3.2

Source: Based on laboratory data from Main Roads

Site no.	Chainage	Transverse metres right of left edge	Test depth (mm)	Moisture content (%)	Wet density (t/m³)	Dry density (t/m³)	Compaction (%)
1	21 078	1.5	150	13	1.992	1.763	96.1
2	21 130	4.5	150	12.6	2.000	1.776	96.8
3	21 165	6.0	150	12.8	1.992	1.765	96.2
4	21 182	4.0	150	12.5	1.997	1.775	96.7
5	21 209	1.0	150	10.6	1.969	1.780	97.0
6	21 245	5.0	150	11.0	1.973	1.777	96.9
7	21 284	4.0	150	10.9	1.959	1.767	96.9
8	21 325	2.0	150	12.4	1.974	1.756	96.3
9	21 357	3.5	150	11.4	1.957	1.757	96.4
	Mean						96.5
Standard deviation						0.334	

Table D 1: Report N34704 subgrade compaction results (tested 21/4/17)

50.0 (k factor) 94.8

96.4

Minimum 96

Characteristic moisture (%)

Characteristic density (%)

Main Roads Specification 302 characteristic dry density ratio (%)

Source: Based on laboratory data from Kanga & Associates (supplied by Main Roads).

Table D 2: R	Report N34710 subba	ase compaction resu	Its (tested 23/4/17)
--------------	---------------------	---------------------	----------------------

Site no.	Chainage	Transverse metres right of left edge	Test depth (mm)	Moisture content (%)	Wet density (t/m³)	Dry density (t/m³)	Compaction (%)
1	21 070	7.0	100	11.3	2.028	1.822	95.3
2	21 101	2.5	100	12.1	2.055	1.832	95.8
3	21 128	4.0	100	11.4	2.033	1.825	95.5
4	21 160	2.5	100	11.0	2.021	1.821	95.2
5	21 186	2.5	100	11.1	2.030	1.827	95.5
6	21 227	0.5	100	10.9	2.017	1.818	95.4
7	21 273	3.5	100	10.7	2.012	1.817	95.0
8	21 303	5.0	100	10.9	2.023	1.824	95.4
9	21 355	2.5	100	12.2	2.071	1.845	96.5
						Mean	95.5
Standard deviation						0.448	
(k factor)						0.59	
Characteristic moisture (%)						98.3	

Characteristic moisture (%)

Characteristic density (%)

Main Roads Specification 302 characteristic dry density ratio (%)

Source: Based on laboratory data from Kanga & Associates (supplied by Main Roads).

95.2

Minimum 94

APPENDIX E DRYBACK

Table E 1: Report N34714 o	dryback sub-base test results	(tested 24/4/17)
----------------------------	-------------------------------	------------------

Site no.	Chainage	Transverse metres right of left edge	Moisture ratio (%)	
1	21 065	1.0	80.8	
2	21 103	3.5	82.3	
3	21 136	4.5	84.3	
4	21 165	3.0	73.4	
5	21 185	6.0	74.8	
6	21 232	0.5	83.6	
7	21 258	6.0	84.2	
8	21 285	2.0	80.3	
9	21 340	4.5	74.3	
	Mean	79.8		
	Standard deviation	4.3	310	
	(k factor)	0.59		
	Characteristic moisture (%)	82.3		
Main Roads characteristic	Specification 501 dryback moisture content (%)	maxim	num 85	

Source: Based on laboratory data from Kanga & Associates (supplied by Main Roads).

APPENDIX F SURFACE SHAPE RESULTS

Figure F 1: Surface shape using straightedge results Lift 2 LR2 Chainage 21 075 – 21 275 LWP

ABN: 50 860 676 021

Surface S	hape Usi	ng a Straightedge Report	W.A. 313.2		Page	1 of	1
Customer	Main Road	is Western Australia					_
Sample No.		S6834		Date/s of Test	28/04	/2017	
Local Govt A	uthority	City Of Gosnells					
Road To	nkin Highw	ay Kelvin Road Intersection					
Carriageway	Tonkin	Highway Southbound		Lane LR2			

Sampling Method WA 110.1

Wheelpaths: LWP = Left wheel path BWP = Between wheel path RWP = Right wheel path

Location		Presence of Shoving	Rut Depth			Maximum Deviation from Straightedge	Crossfall
Distance from Start	Start Chainago (m)		Size of Stra	ightedge:	3.00m	3.00 m	3.00 m
	Start Chanage (m)	Yes 🖌		(mm)			Average
(m)	Chainage (m)	No ×	LWP	BWP	RWP	(mm)	(%)
20	21075	×	0			3m	
40	21095	×	4			3m	
60	21115	×	2			3m	
80	21135	×	1			3m	
100	21155	×	1			3m	
120	21175	×		0		3m	
140	21195	×			1	3m	
160	21215	×		1		3m	
180	21235	×		0		3m	
200	21255	×	2			3m	
220	21275	×			4	3m	
Comments TRIM 16/44	/ Distribution 41				Approved Sign Name Ma	atory Irk Hopgood	
				F	Function Pro Date 3/0	bject Officer 15/2017	•

3/2017 TRIM: D14#62823

Figure F 2: Surface shape using straightedge results Lift 2 LR1 Chainage 21 075 – 21 275 BWP

AL AL				ABN:	50 860 67	6 021
Surface Sha	ape Using a Straightedge Report	W.A. 313.2		Page	1 of	1
Customer M	lain Roads Western Australia					
Sample No.	S6835		Date/s of Test	28/04	/2017	
Local Govt Aut	hority City Of Gosnells					
Road Tonk	kin Highway Kelvin Road Intersection					
Carriageway	Tonkin Highway Southbound		Lane LR1			

Sampling Method WA 110.1

Wheelpaths: LWP = Left wheel path BWP = Between wheel path RWP = Right wheel path

Location		Presence of Shoving	Rut Dep			Maximum Deviation from Straightedge	Crossfall	
from Start	Start Start Chainage (m)		Size of Stra	ightedge:	3.00m	3.00 m	3.00 m	
		Yes 🗸		(mm)		10 m	Average	
(m)	Chainage (m)	No ×	LWP	BWP	RWP	(mm)	(%)	
20	21075	×	1			3m		
40	21095	×				3m		
60	21115	×		0		3m		
80	21135	×		3		3m		
100	21155	×	2			3m		
120	21175	×		0	_	3m		
140	21195	×		0		3m		
160	21215	×		0		3m		
180	21235	×		1		3m		
200	21255	×		0		3m		
220	21275	×		2		3m		
							-	
Comments / TRIM 16/44	Distribution 41			A	pproved Signa		1	
				F	unction Pro late 3/0	ject Officer 5/2017	ì	

Document:71/05/313.2 Issue:21/03/2017 TRIM:D14#628231

MAIN ROADS Western Australia

Figure F 3: Surface shape using straightedge results Lift 2 LR2 Chainage 21 075 – 21 275

				1.011.	00 000 01	0 02 1
Surface Shape Using a Straightedge Report		W.A. 313.2		Page	1 of	1
Customer	Main Roads Western Australia					
Sample No.	S6836		Date/s of Test	28/04	/2017	
Local Govt Au	uthority City Of Gosnells					
Road Tor	nkin Highway Kelvin Road Intersection		A.			
Carriageway	Tonkin Highway Southbound		Lane LR2			

Sampling Method WA 110.1

Wheelpaths: LWP = Left wheel path BWP = Between wheel path

RWP = Right wheel path

Location		Presence of Shoving	of Rut Depth		h	Maximum Deviation from Straightedge	Crossfall
from Start	Start Chainage (m)		Size of Stra	ightedge:	3.00m	3.00 m	3.00 m
		Yes ✓		(mm)			Average
(m)	Chainage (m)	No ×	-1m	0m	+1m	(mm)	(%)
20	21075	×			1	3m	
40	21095	×		0		3m	
60	21115	×		1		3m	
80	21135	×		1		3m	
100	21155	×			3	3m	
120	21175	×		0		3m	
140	21195	×			3	3m	
160	21215	×			6	3m	
180	21235	×		0		3m	
200	21255	×			4	3m	
220	21275	×		2		3m	
Comments / TRIM 16/444	Distribution 41				Approved Signa	tory	
					Name Mar	k Hopgood	
					Function Proj	ect Officer	
Document:71/	05/313.2 Issue:21/03/2017	TRIM:D14#628231			500	MAIN ROAD	S Western Australia

Document:71/05/313.2 Issue:21/03/2017 TRIM:D14#628231

Figure F 4: Surface shape using straightedge results Lift 2 LR2 Chainage 21 075 – 21 275 BWP

AUST.			ABN	50 860 67	6 021
Surface Shape Using a Straightedge Report	W.A. 313.2		Page	1 of	1
Customer Main Roads Western Australia					
Sample No. S6837		Date/s of Test	28/04	/2017	
Local Govt Authority City Of Gosnells					
Road Tonkin Highway Kelvin Road Intersection					
Carriageway Tonkin Highway Southbound		Lane LR2			

WA 110.1 Sampling Method

Wheelpaths: LWP = Left wheel path BWP = Between wheel path RWP = Right wheel path

Location		Presence of Shoving	Rut Depth			Maximum Deviation from Straightedge	Crossfall
from Start	Start Chainage (m)		Size of Stra	ightedge:	3.00m	3.00 m	3.00 m
	J,	Yes 🖌		(mm)			Average
(m)	Chainage (m)	No ×	-1m	0m	+1m	(mm)	(%)
20	21075	×		0		3m	
40	21095	×		0		3m	
60	21115	×		4		3m	
80	21135	×		1		3m	
100	21155	×	3			3m	
120	21175	×		0		3m	
140	21195	×		0		3m	
160	21215	×		2		3m	
180	21235	×		1		3m	
200	21255	×			6	3m	
220	21275	×		0		3m	
Comments / TRIM 16/44	/ Distribution 41			A	Approved Signa	k Hopgood	
					Date 3/0	5/2017	

21/03/2017 TRIM:D14#628231

APPENDIX G SURFACE TEXTURE RESULTS

Figure G 1: Skid resistance and surface texture results Layer 2 (LR1 & LR2) Chainage 21 050 – 21 275

TEST REPORT				Wester	n AUSTRALIA ABN: 50 860 676 02
PAVEMENT SKID RE	SISTANCE WA 310.1 AI	ND SURFACE TEXTUR	E WA 311.1	Page	1 of 1
Sample/ Report No.	17 S6843/1	Project/Contract No.		EME2 Trials	
Date Tested.	28/04/2017	Date Received.	28/04/2017	Surface Age.	Not Supplied
Road.	Tonkin Hi	ighway / Kelvin Road Int	tersection	Aggregate Type	Not Supplied
Location.		21050-21275		Aggregate Size	Not Supplied
Lane	SLK	Offset / Wheelpath	Surface Type	Texture De	pth (mm)
		LR2		0.5	5
BWP	21185	Join	14mm Dense Grade	0.	7
		LR1	Asphalt EME2 Trial	0.6	
	04005	LR2	Mix	0.0	7
BMb	21225	Join	-	0.	3
		LRI	Moon	0.	5
		τ.			
Comments / Distributi	on			Approved Signatory:	
TRIM 16/4441					
				Function: F Name: M Date:	lark Hopgood 3/05/2017

Document:71/05/2341.2 Issue:18/02/2016 TRIM:D14#629288

APPENDIX H TENSILE STRENGTH RATIO

Figure H 1: Tensile strength ratio test results S6848 (sampled 26/04/17) (page 1)

	D)						ŧ	mainroads
TEST RE	PORT							Sheet 1 of 3
Report No	0	17 S6848	8/1			Refere	ence No:	Not Applicable
Date Sam	npled:	26/04/20	17			Date/s	Tested :	27/4-3/5/2017
Sample N	lumber:	S6821					_	
Local Gov	vt Authority:	City of Gos	nells	Road	Name		Tonk	in Hinbway
Project/Co	ontract No :	WAR	RIP EME2 T	rial (Customer		Main Roa	de Western Australia
Asphalt m	nixture detai	ls:			14mm De	nse Gra	de Asnhalt	as motorin Adatiana
Grading T	Type:	Dense			Jominal Mi	iv Siza	14	-
Binder Co	ontent: 5	.9 % Tv	e EME2	Binder l	Detaile rofe	N OIZE.	ampie Nº	00004
Sampling	Method / Pr	Aparation:	SAMDI IN			sience s	ample N.	56821
- Camping	AC:		SAMPLIN	IG PROCE	DURESFO	JR ASP	HALT AS 2	891.1.1
-	AG:	P1/1232 STR	PPING POT	ENTIAL O	F ASPHAL	. <u>T - TEN</u>	ISILE STREN	IGTH RATIO
Test cond	ditions:	Standard refe	rence test co	nditions us	ed			
Specime	en Number	% Air Voids	(AS 2891.8)	Degree o	f Saturatio	on (%)	Swell (%)	Tensile Strength (kPa)
	T4	7.	6		66.6	-+	42	1020
	T6	7.	8		66.8		4.5	1423
	T9	7.	7	<u> </u>	66.4	-+	4.5	1475
M	ean	7.	7		66.6		4.4	1379
D	Dry			<u> </u>	00.0	-		13/5
	T1	7.2	2					1468
1	Т3	7.9	5					1488
1	T7	7.3	3			_		1459
M4	ean	7.	3					1472
					Tens	ile Stre	ngth Ratio (%	%) 94
			Visual Ass	essment o	n Degree	of Strip	ping	
Type o	of Aggregat	e Nil	Minimal	Sample and	One Dry Sa	ample Or	nly)	
Wet	Coarse		X	Moderate	Severe	+	Eavy are al	omments
	Fine	<u> </u>	x				Few crack	ed, appears mastic
Dry	Coarse	3	×			<u> </u>	Several cra	cked appears mastic
	Fine		x				Aderate cra	cking, appears mastic
Observa	ations							
Jyratory A	nale (°)	2.0		AS 28 Number of	91.2.2 Cycles		Various	
Commente	/ Dietributic					-	various	
RIM 16/4	441 6	211				Approv	red Signatory	2
						Name		Mark Hopgood
						Functio	on	Project Officer
Incument 34	ME (TO 20 Inc.	080000000000000000000000000000000000000	Did alling and the			Date		5/04/2017
Jocument:71	/05/1232 Issue	:08/03/2017 TRIM	:D14#630776					Main Roads Western Australia
~	Accredited for	compliance with th	0/100 47000	Tastia				Materials Engineering
NATA	ACCREDITAT	ION No. 1989 SIT	E No. 1982	resung				JJG Punch Laboratory
V	Al		- 10 1302					5-9 Colin Jamieson Drive
TECHNICAL							т.	WELSHPOOL WA 6106
							16	

Figure H 2: Tensile strength ratio test results S6848 (sampled 26/04/17) (page 2)

			mainroads					
TEST REPORT			ABN: 50 860 676 021					
Report No:	17 S6848 / 1	Reference No:	Not Applicable					
Date Sampled:	26/04/2017	Date/s Tested :	26/04/2017					
Local Govt Authority:		Not Applicable	-					
Road Name:		Not Applicable						
Project/Contract No :	WARRIP EME2 Trial	Customer: Main R	oads Western Australia					
Asphalt mixture details:	sphalt mixture details: 14mm Dense Grade Asphalt							
Grading Type:	Dense No	ominal Mix Size:	14 mm					
Binder Content: 5.9	% Type EME2 Binder Details reference sample N°: \$6821							
Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT - AS 2981.1 COMPACTION OF ASPHALT USING A GYRATORY COMPACTOR - AS 2891.2.2								
Determination o	of the Maximum Density of A	Asphalt - Water Displacement M	lethod AS 2891.7.1					
	Maximum Density reference	aximum Density 1/m²	2.492 S6821					
	Bulk Density AS 289	91.9.2 / Air Voids AS 2891.8						
		Gyratory Cycles	100					
	Temperatur	re at Compaction (°C)	177					
Specimen Number	Bulk Density (t/m ³	Water Absorption (%)	Air Voids (%)					
1	2.428	0.2	2.6					
2	2.428	0.3	2.6					
3	2.430	0.3	2.5					
Commente / Distribution	Mean 2.429	0.3	2.6					
TRIM 16/4441 REPORTS		Approved Signatory	2 (.					
		Name Mark Ho	pgood					
		Function Project C	Officer					
Document:71/05/2891 13 1 Jesue:00	8/03/2017 TRIM-D14#630733	Date 5/04/201	/					
			Main Roads Western Australia Materials Engineering					
Accredited for compli	iance with ISO/IEC 17025 - Testi	ng	JJG Punch Laboratory					
ACCREDITATION N	o. 1989 SITE No. 1982		5-9 Colin Jamieson Drive					
\sim			WELSHPOOL WA 6106					

TECHNICAL

arcob AUSTRALIAN ROAD RESEARCH BOARD Tel: 08 9323 4744 Fax: 08 9323 4766

				* main	roads				
ALL ALL					ABN. 50 860 676 021				
TEST REPORT				Shee	st 3 of 3				
Report No:	17 Se	848 / 1	Reference	No: Not Appl	icable				
Date Sampled:	26/0	4/2017	Date/s Test	ed : 28/04/2	2017				
Local Govt Authorit	y:		Not Applicable						
Road Name:			Not Applicable						
Project/Contract No	. WA	RRIP EME2 Trial	Customer:	Main Roads Wester	rn Australia				
Asphalt mixture det	ails:		14mm Dense Gra	ade Asphalt					
Grading Type:	Dens	e No	ominal Mix Size:	14	mm				
Binder Content:	5.9 %	Type EME2	Binder Details refe	rence sample N°:	S6821				
Sampling Method /	Preparation:	SAMPLING PROCED	URES FOR ASPHALT	- AS 2981.1					
Determ	nination of the	COMPACTION OF AS	SPHALT USING A GYI	CATORY COMPACTOR	- AS 2891.2.2				
Determ	induoir or the	maximum benary of P	apriate mator propia						
		M	aximum Density t/m³	2.492					
	M	aximum Density refere	ence Sample Number	S6821					
		Bulk Density AS 289	1.9.3 / Air Voids AS 2	891.8	-				
		Temperatur	Gyratory Cycles at Compaction (°C)	100					
		i oniporatai	e al computation (c)						
Specimen N	lumber	Bulk Density (t/m3)) Air Voids	(%)					
1		2.384	4.3						
2		2.303	4.5						
		2.000							
	Mear	2.379	4.5						
Commonte / Diotrib	ution		Approved S	lanatan	1				
TRIM 16/4441	ution		Approved a		{				
REPORTS				Y					
			Name	Mark Hopgood					
			Function	Project Officer					
			Date	5/04/2017					
Document:71/05/2891.1	3.1 Issue:08/03/2	017 TRIM:D14#630733		Main R	oads Western Australia				
					Materials Engineering				
					JJG Punch Laborator				
				5-	9 Colin Jamieson Drive				

Figure H 3: Tensile strength ratio test results S6848 (sampled 26/04/17) (page 3)

WELSHPOOL WA 6106

Tel: 08 9323 4744 Fax: 08 9323 4766

Figure H 4: Tensile strength ratio test results S6849 (sampled 27/04/17) (page 1)

 mair	iroa	lds

San and									
TEST RE	PORT							ABN: 50 860 67 Sheet 1 of	
Report No	D:	17 S6849	9/1			Refere	nce No:	Not Applicable	
Date Sam	npled:	27/04/20	17			Date/e	Tostad :	27/4 2/5/2047	
Sample N	lumber	\$6823	1			Date/ş	resteu .	2//4 - 3/5/201/	
Local Gov	d Authority	City of Cov	,				-		
Decised/Or	Authority.	City of Gos	snells	Road	Name:		Tonkir	Highway	
Project/Co	ontract No :	WAR	RIP EME2 T	rial C	Customer:		Ma	inroads WA	
Asphalt m	ixture detail	S:			14mm De	nse Gra	de Asphalt		
Grading T	уре:	Dense		ľ	Nominal M	x Size:	14 mm	1	
Binder Co	ntent: 5	.9 % Ty	be EME2	Binder [Details refe	erence s	ample N°;	S6823	
Sampling	Method / Pr	eparation:	SAMPLIN	IG PROCE	DURES FO	OR ASP	HALT AS 28	91.1.1	
	AG:	PT/T232 STR	PPING POT	ENTIAL OF	F ASPHAL	T - TEN	SILE STREN	STH RATIO	
Test cond	litions:	Standard refe	rence test co	nditions us	ed				
Specime	n Number	% Air Voids	(AS 2891.8)	Degree o	f Saturatio	on (%)	Swell (%)	Tensile Strength (b)	
W	/et						Owen (76)	Tensile Strengtil (Kr	
	T2	8.	3		64.6		4.1	1451	
	18	7.	8		64.7		4.5	1473	
Me	ean	8.	0		65.2	-	4.9	14/3	
D	ry				00.2		4.0	1400	
1	ГЗ	7.	4					1448	
1	4	7.	2					1577	
Ma	5	8.	0					1365	
Inte	san	7.	0					1464	
					Tens	ile Strei	ngth Ratio (%	100	
			Visual Ass	essment o	n Degree	of Strip	ping		
Tune	Annanat		(One Wet	Sample and	One Dry S	ample Or	nly)		
Wet	Coarse		Minimal	Moderate	Severe	-	Co	omments	
mot	Fine		×		————	+	Several craci	(ed, appears mastic	
Dry	Coarse		×			+	Several crack	red appears mastic	
	Fine		x				Several crack	ked, appears mastic	
Observa	ations								
				_		_			
				AS 28	91.2.2		_		
Syratory A	ngle (°)	2.0		Number of	Cycles	-	Various	- 1	
Comments	/ Distributio	n				Approv	ed Signatory	21	
RIM 16/44	441						K	$>$ \	
101110						Nome		Mark Danaged	
						Functio		Mark Hopgood	
						Date		5/04/2017	
ocument:71/	/05/T232 Issue	:08/03/2017 TRIN	D14#630776			Indie		Main Roads Western Austr	
~								Materials Enginee	
ATA	Accredited for	compliance with k	SO/IEC 17025 -	Testing				JJG Punch Labora	
1	ACCREDITAT	ION No. 1989 SIT	E No. 1982					5-9 Colin Jamieson D	
								WELSHPOOL WA 6	
ECHNICAL							Tel:	08 9323 4744 Fax: 08 9323 4	

Figure H 5: Tensile strength ratio test results S6849 (sampled 27/04/17) (page 2)

		Ŧ	mainroads
TEST REPORT			ABN. 50 860 676 02 Sheet 2 of 3
Report No:	17 56849 / 1	Reference No:	Not Applicable
Date Sampled:	27/04/2017	Date/s Tested :	2/05/2017
Local Govt Authority:		Not Applicable	
Road Name:		Not Applicable	
Project/Contract No :	WARRIP EME2 Trial	Customer: Main	Roads Western Australia
Asphalt mixture details:		14mm Dense Grade Asp	phalt
Grading Type:	Dense No	minal Mix Size:	14 mm
Binder Content: 5.9	% Type EME2	Binder Details reference s	ample N°: S6823
Sampling Method / Preparati Determination o	ON: SAMPLING PROCEDU COMPACTION OF AS If the Maximum Density of A	URES FOR ASPHALT - AS 28 PHALT USING A GYRATOR sphalt - Water Displacement	81.1 Y COMPACTOR - AS 2891.2.2 Method AS 2891.7.1
	Ma	ximum Density t/m3	2.483
	Maximum Density refere	nce Sample Number	S6823
	Bulk Density AS 2891	1.9.2 / Air Voids AS 2891.8	
		Gyratory Cycles	100
	Temperature	at Compaction (°C)	177
Specimen Number	Bulk Density (t/m ³)	Water Absorbtion (%)	Air Voids (%)
1	2.410	0.2	2.9
2	2.411	0.2	2.9
3	2.409	0.2	3.0
Comments / Distribution	viean 2.410	0.2	2.9
TRIM 16/4441		whitened signatory	\sim
REPORTS			X
		Name Mark H	opgood
		Function Project	Officer 12
Document:71/05/2891.13.1 Issue:08	V03/2017 TRIM:D14#630733		Main Roads Western Australia
~			Materials Engineering
NATA Accredited for complia	ance with ISO/IEC 17025 - Testing	9	JJG Punch Laboratory
ACCREDITATION No	1090 CITE No. 1090		

ACCREDITATION No. 1989 SITE No. 1982

JJG Punch Laboratory 5-9 Colin Jamieson Drive WELSHPOOL WA 6106 Tel: 08 9323 4744 Fax: 08 9323 4766

TECHNICAL

Figure H 6: Tensile strength ratio test results S6849 (sampled 27/04/17) (page 3)

						nainr Estern au	oad	S
TEST REPORT						AE Sheet	3N: 50 860 6	376 02 [.] 3
Report No:	17 \$684	9/1		Referenc	e No:	Not Applica	ble	
Date Sampled:	27/04/20	017		Date/s Te	sted	2/05/2017	7	
Local Govt Authority:				Not Appl	icable			
Road Name:	_			Not Appl	icable			
Project/Contract No :	WARR	P EME2 Trial	Cust	omer:	Main Ro	ads Western /	Australia	
Asphalt mixture details:			14m	m Dense G	rade Aspha	alt		
Grading Type:	Dense		Nominal M	ix Size:		14		mm
Binder Content: 5.9	% Ту	pe EME2	Binder	Details ref	erence sam	ple N°:	S6823	
Sampling Method / Prepara	ation: SA	MPLING PROCI	EDURES FO	OR ASPHAL	T - AS 2981. (RATORY C		5 2891 2 2	
Determination	of the Max	imum Density o	f Asphalt -	Water Displ	acement Me	thod AS 2891.7	7.1	
	Maxim	um Density refe	Maximum I erence Sam	Density t/m	*	2.486 \$6823		
	D(IK Density AS 2	891.9.3 / AI	r Voids AS	2891.8			
		Temperat	Gyra ture at Com	atory Cycles paction (°C		100 177		
Specimen Number	1	Bulk Density (t/n	n ³)	Air Void	. (%)			
1		2.367		4.8	. (,,,)	1		
2	_	2.368		4.8				
	_	2.365		4.8				
	Mean	2.367		4.8		-		
						_		
Comments / Distribution TRIM 16/4441 REPORTS				Approved \$	Signatory	X		_
				Name Function	Mark Hopg Project Off	jood	(
Document 71/05/2001 12 4 1	10/09/004 7 77	Dille D4 4804487		Date	5/04/2017			
200001380127 170072891.13.1 ISSUE:	08/03/2017 TI	RIM:D14#630733				Main Roads	Western Aus	stralia
						Mate	enais Engine Punch Labor	ratoov
						5-9 Coli	n Jamieson	Drive

AUSTRALIAN ROAD RESEARCH BOARD

WELSHPOOL WA 6106

Tel: 08 9323 4744 Fax: 08 9323 4766

WHEEL TRACKING TEST RESULTS **APPENDIX I**

Figure I 1: Wheel tracking test report ARRB 16-8-4, 60 000 passes (30 000 cycles)

Wheel Tracking Test Report

Test Method Austroads AGPT/T231

Report No: 16-8-4

MRWA Client:

Mix Details: EME2 Tonkin Hwy, Plant Downer, Martin, 10x 10L asphalt samples (tins: 8, 13, 16, 18, 19, 26 and 4 tins with no identification)

ARRB Lab No.	5203	5224	
Client Sample No.	N/A	N/A	
Date Manufactured	22/06/17	03/07/17	
Testing date	27/06/17	07/07/17	
Age of specimen	5 days	4 days	
Maximum number of loading passes	60,000	60,000	
Bulk Density (t/m ³)	2.395	2.411	
Air Voids of Slab (%)	4.1	3.4	
Temperature Start / Finish (°C)	60 / 61	60 / 60	
Maximum Tracking Depth (mm)	1.5 0.6		
Average Max Tracking Depth (mm)	1	.1	

Notes:

- All specimens 50 mm thick
- Applied load for all tests was 708 N .
- This report relates specifically to the sample tested as supplied
- Specimen manufactured in the laboratory by reheating plant mix
- Air voids calulated from supplied maximum density of 2.495 t/m3 .
- Speciemens tested to 60,000 passes

(Shannon Malone) Approved Signatory Date: _____11/08/17___ Issue H Accredited for compliance ISO/IEC 17025 - Testing Authorised by Shannon Malone RR-422-1-0-105 CN 004 620 BN 68 004 NATA The results of the tests, calibrations end/or This document shell not be reproduced, except in full. nt South VIC 3133 calibrations and/or measurements included in this document are traceable to Australian/rational standards. Australia Tet 03 9881 1555 NATA Accredited Laboratory Number: 9594 Page 1 of 1

Wheel tracking test report ARRB 16-8-5, 10 000 passes (5 000 cycles) Figure I 2:

Wheel Tracking Test Report

Test Method Austroads AGPT/T231

Report No: 16-8-5

Client: MRWA

Mix Details: EME2 Tonkin Hwy, Plant Downer, Martin, 10x 10L asphalt samples (tins: 8, 13, 16, 18, 19, 26 and 4 tins with no identification)

ARRB Lab No.	5203	5224
Client Sample No.	N/A	N/A
Date Manufactured	22/06/17	03/07/17
Testing date	27/06/17	07/07/17
Age of specimen	5 days	4 days
Maximum number of loading passes	10,000	10,000
Bulk Density (t/m³)	2.395	2.411
Air Voids of Slab (%)	-4.1	3.4
Temperature Start / Fin sh (°C)	60/61	60 / 60
Maximum Tracking Depth (mm)	1.3	0.4
Average Max Tracking Depth (mm)	0	.9

Notes:

- All specimens 50 mm thick .
- Applied load for all tests was 708 N .
- This report relates specifically to the sample tested as supplied ٠
- Specimen manufactured in the laboratory by reheating plant mix .
- Air voids calulated from supplied maximum density of 2.495 t/m3

no

Approved Signatory:

(Shannon Malone)

Date: 11/08/17

ARRB Group Ltd ACN 004 620 651 ACN 004 620 651 ABN 68 004 620 651 500 Burwood Highway Vermont South VIC 3133 03 9881 1555 03 9887 8104

Authorised by Shennon Malone RR-422-1-0-105 This document shall not be reproduced, except in full. Page 1 of 1

Issue H

Tet Fax:

Table J 1: Flexural modulus results for EME2

Temperature	Frequency	Flexural modulus for replicate specimens (MPa)							Statistics		
(°C)	(Hz)	5202-1 (AV 5.1)	5202-2 (AV 4.2)	5202-3 (AV 4.0)	5202-4 (AV 4.5)	5231-1 (AV 1.9)	5231-4 (AV 1.8)	Mean (MPa)	STDEV (MPa)	CoV (%)	
	0.1	10 383	11 015	10 777	9 860	14 813	13 998	11 808	2 066	17.5	
	0.5	11 942	12 726	13 011	11 818	16 255	16 159	13 652	2 031	14.9	
	1	12 576	13 537	13 810	12 538	17 017	16 873	14 392	2 042	14.2	
E	3	13 806	14 801	15 181	13 942	18 555	18 371	15 776	2 145	13.6	
5	5	14 241	15 552	15 934	14 686	19 306	19 021	16 457	2 183	13.3	
	10	15 045	16 352	16 920	15 739	20 536	19 963	17 426	2 282	13.1	
	15	15 259	16 841	17 160	16 041	20 254	20 248	17 634	2 132	12.1	
	20	15 410	16 952	17 233	16 081	20 380	20 310	17 728	2 128	12.0	
	0.1	7 557	8 365	8 768	8 351	11 877	11 030	9 325	1 716	18.4	
	0.5	9 578	10 046	10 413	10 217	13 952	12 994	11 200	1 808	16.1	
	1	10 283	10 888	11 274	10 996	14 763	13 831	12 006	1 828	15.2	
10	3	11 395	12 150	12 752	12 332	16 096	15 188	13 319	1 875	14.1	
10	5	12 129	12 911	13 321	12 970	16 780	15 944	14 009	1 882	13.4	
	10	12 922	13 880	14 369	13 832	17 620	16 799	14 904	1 864	12.5	
	15	13 464	14 541	14 809	14 264	18 120	17 324	15 420	1 856	12.0	
	20	13 614	14 711	14 964	14 354	18 032	17 653	15 555	1 834	11.8	
	0.1	4 553	4 759	4 763	4 594	7 673	7 348	5 615	1 474	26.3	
	0.5	5 348	5 991	6 024	5 758	9 108	8 889	6 853	1 681	24.5	
	1	5 951	6 692	6 610	6 434	9 698	9 591	7 496	1 684	22.5	
20	3	7 161	7 714	8 016	7 585	11 043	10 975	8 749	1 772	20.3	
20	5	7 724	8 415	8 521	8 216	11 603	11 426	9 318	1 725	18.5	
	10	8 459	9 329	9 446	9 118	12 624	12 447	10 237	1 814	17.7	
	15	9 027	9 988	9 973	9 683	13 210	13 030	10 819	1 817	16.8	
	20	9 298	10 271	10 240	9 832	13 465	13 372	11 080	1 846	16.7	
	0.1	2 027	2 139	1 998	2 153	4 334	3 793	2 741	1 041	38.0	
	0.5	2 611	2 798	2 743	2 828	5 061	4 690	3 455	1 109	32.1	
	1	3 079	3 279	3 208	3 343	5 675	5 324	3 985	1 182	29.7	
30	3	3 795	4 180	4 081	4 177	6 789	6 350	4 895	1 312	26.8	
	5	4 255	4 635	4 562	4 640	7 411	6 988	5 415	1 396	25.8	
	10	4 847	5 243	5 251	5 297	8 145	8 215	6 166	1 568	25.4	
	15	5 183	5 639	5 575	5 736	8 588	8 554	6 546	1 580	24.1	
	20	5 395	5 892	5 801	5 912	8 906	9 303	6 868	1 747	25.4	
	0.1	754	827	895	896	1 826	1 732	1 155	487	42.2	
40	0.5	1 105	1 189	1 222	1 234	2 453	2 359	1 594	632	39.6	
	1	1 305	1 410	1 487	1 456	2 907	2 782	1 891	742	39.2	
	3	1 806	1 964	2 054	2 008	3 587	3 489	2 485	821	33.0	

- 124 -

Temperature	Frequency		Flexural modulus for replicate specimens (MPa)							Statistics		
(°C)	(Hz)	5202-1 (AV 5.1)	5202-2 (AV 4.2)	5202-3 (AV 4.0)	5202-4 (AV 4.5)	5231-1 (AV 1.9)	5231-4 (AV 1.8)	Mean (MPa)	STDEV (MPa)	CoV (%)		
	5	2 068	2 284	2 411	2 314	4 048	3 883	2 835	885	31.2		
	10	2 506	2 721	2 892	2 779	4 653	4 486	3 340	962	28.8		
	15	2 694	2 957	3 163	3 042	4 964	4 793	3 602	1 002	27.8		
	20	2 829	3 174	3 282	3 199	5 180	4 999	3 777	1 030	27.3		

Figure J 1: Master curve for air voids 5.1% (reference temperature 15 °C)

AUSTRALIAN ROAD RESEARCH BOARD

Figure J 2: Master curve for air voids 4.2% (reference temperature 15 °C)

FATIGUE RESISTANCE RESULTS **APPENDIX K**

Table K 1: Fatigue results

Temperature (°C)	Sample #	Strain level (με)	N _{f 50}	Air void (%)	Age (days)	Initial modulus (MPa)
	4-197541	160 ¹	159 952	3.4	56	14 856
	6-197541	130 ¹	3 053 782	3.1	84	16 316
	7-197541	145 ¹	324 684	3.5	83	16 084
	29	200 ²	247 581	3.0	116	14 545
10	1-197541	200 ²	31 788	3.2	5	15 247
10	23	250 ³	19 401	2.9	97	16 239
	26	250 ³	33 530	2.9	102	16 213
	27	250 ³	52 874	3.0	110	14 878
	19	300 ³	12 197	2.9	85	15 937
	21	300 ³	6 326	2.9	90	14 847
	16	160 ¹	3 749 683	2.9	69	10 591
	8	180 ¹	524 454	2.7	44	9 929
	12	180 ¹	2 136 444	2.7	48	9 534
	10	180 ¹	782 686	2.8	45	10 144
20	3	200 ²	660 889	2.6	41	9 204
20	11	200 ²	270 661	2.9	43	9 600
	9	200 ²	216 787	2.6	43	10 237
	13	300 ³	26 288	3.1	51	9 119
	14	300 ³	49 965	2.9	68	9 230
	15	300 ³	32 200	3.0	68	8 642
	8-197540	200 ¹	3 501 255	3.5	24	6 859
	5-197541	200 ¹	1 726 130	3.4	57	6 675
	3-197541	225 ¹	465 747	3.3	45	7 048
	20	300 ²	197 823	2.9	86	5 295
30	22	300 ²	62 960	2.8	91	5 575
50	24	300 ²	100 840	2.7	98	5 812
	2-197541	300 ²	105 953	2.7	7	5 910
	25	350 ³	42 815	3.1	101	5 681
	28	350 ³	54 379	2.8	101	5 412
	30	350 ³	47 889	2.8	118	5 412

Low strain.
Medium strain.
High strain.

APPENDIX L INDIRECT TENSILE TEST RESULTS

Figure L 1: Resilient modulus (ITT) results 17 S6852 (page 1) (26/04/17)

				MESTE	inroads
TEST REPORT					ABN: 50 860 676 021 Sheet 1 of 4
Report No:	17 S6852 / 2		R	eference No: Not	Applicable
Date Sampled:	26/04/2017		Da	te/s Tested : 1	-3/5/2017
Local Govt Authority:		_	City of (Gosnells	01012011
Road Name:			Tonkin l	Highway	
Project/Contract No :	WARRIP FM	F2 Trial	Customer	Main Roads Wee	torn Australia
Asphalt mixture details			14mm Dense	Grade Asphalt	Australia
0				orade Asphan	
Grading Type:	Dense	Nominal N	lix Size:	14	mm
Binder Content: 5	5.9 % Type EN	ME2 Binder	r Details referen	ce sample N°:	S6822
Sampling Method / Pre	eparation: SAM	PLING PROCED	URES FOR AS	PHALT AS 2981.1	
Determi	nation of the Resilient	Modulus of Asp	halt - Indirect 1	ensile Method AS/NZS	2891.13.1
Test conditions:	Standard reference te	st conditions use	d		
Other properties of the have influenced the r	ne asphait that may results				
Asphalt mixing temper	ature (°C)		Not Supp	lied	
Temperature at compa	iction (°C)		177		
Number of Gyratory Cy	vcles		Various	5	
Pressure in Modulus N	lachine Accuator (kPa)		850		
Start of Conditioning til	me		7:50:00)	
Date and Time of test		3	/05/2017	12:47:00	
Conditioning Time (hor	urs)		4.95		
Temp after conditioning	g (°C)		24.8		
Date of specimen man	ufacture		26/04/20	17	
Specimen Number	Core Temperature of	Mean Diameter	Mean Heigh	t Resilient Modulus of	Coefficient of
	Specimen (°C)	(mm)	(mm)	Specimen (MPa)	(%)
M6	25.0	99.3	49.9	9288	0.90
M7	25.0	99.4	49.8	9975	0.77
8	25.0	99.5	49.9	9990	0.83
M10	25.0	99.6	49.9	9209	0.69
into			43.0	0041	0.39
	Mean	99.5	49.9	9,420	0.7
		AS 28	891.2.2		
Gyratory Angle (·)2		Number of Cyc	cles Various	
Comments / Distributio TRIM 16/4441 REPORTS This report replaces 17 of the resilient modul	n ' S6852/1. Rectified erro us specimens.	or in manufacture	Ap Na date Fui Da	me Mark Hopgood Project Officer 28/06/2017	21.
Accredited for ACCREDITAT	ssue:08/03/2017 TRIM:D14# compilance with ISO/IEC 17/ FION No. 1989 SITE No. 1982	630733 025 - Testing	190	N Tel: 08 9	Aain Roads Western Australia Materials Engineering JJG Punch Laboratory 5-9 Colin Jamieson Drive WELSHPOOL WA 6106 323 4744 Fax: 08 9323 4766

Figure L 2: Resilient modulus (ITT) results 17 S6852 (page 2) (26/04/17)

TEST REPORT Sheet Report No: 17 S6852 / 2 Reference No: Not Applin Date Sampled: 26/04/2017 Date/s Tested : 1-3/5/20 Local Govt Authority: City of Gosnells Road Name: Tonkin Highway Project/Contract No : WARRIP EME2 Trial Customer: Main Roads Western Asphalt mixture details: 14mm Dense Grade Asphalt Grading Type: Dense Nominal Mix Size: 14 Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density t/m³ 2.497 Maximum Density reference Sample Number S6822 S6822 S6822 Maximum Density AS 2891.9.2 / Air Voids AS 2891.8 Maximum Consist (t/m³) Water Absorbtion (%) Air M6 2.377 0.8 M7 2.379 0.6 M8 2.374 0.6 M9 2.373 0.6 M9 2.373 0.6 M100 2.378 0.6 M1	ABN: 50 860 676 021
Report No: 17 S6852 / 2 Reference No: Not Applin Date Sampled: 26/04/2017 Date/s Tested : 1-3/5/20 Local Govt Authority: City of Gosnells Reference No: 1-3/5/20 Road Name: Tonkin Highway Project/Contract No : WARRIP EME2 Trial Customer: Main Roads Western Asphalt mixture details: 14mm Dense Grade Asphalt 14mm Dense Grade Asphalt 14 Grading Type: Dense Nominal Mix Size: 14 Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 See29 Maximum Density AS 2891.9.2 / Air Voids AS 2891.8 See29 Maximum Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.8 M7 M8 2.374 0.6 M9 M10 2.378 0.6 M10	2 01 4
Date Sampled: 26/04/2017 Date/s Tested : 1-3/5/20 Local Govt Authority: City of Gosnells Road Name: Tonkin Highway Project/Contract No : WARRIP EME2 Trial Customer: Main Roads Western Asphalt mixture details: 14mm Dense Grade Asphalt Grading Type: Dense Nominal Mix Size: 14 Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 2.497 Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 36822 Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.6 M8 2.374 0.6 M9 2.378 0.6 M10 2.378 0.6	able
Local Govt Authority: City of Gosnells Road Name: Tonkin Highway Project/Contract No : WARRIP EME2 Trial Customer: Main Roads Westerr Asphalt mixture details: 14mm Dense Grade Asphalt Grading Type: Dense Nominal Mix Size: 14 Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.8 M7 2.379 0.6 M8 2.374 0.6 M9 2.373 0.6 M10 2.378 0.6 M10	17
Road Name: Tonkin Highway Project/Contract No : WARRIP EME2 Trial Customer: Main Roads Westerr Asphalt mixture details: 14mm Dense Grade Asphalt 14mm Dense Grade Asphalt Grading Type: Dense Nominal Mix Size: 14 Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) M6 2.377 0.8 M7 2.379 0.6 M8 2.374 0.6 M9 2.373 0.6	
Project/Contract No : WARRIP EME2 Trial Customer: Main Roads Westerr Asphalt mixture details: 14mm Dense Grade Asphalt Grading Type: Dense Nominal Mix Size: 14 Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) M6 2.377 0.6 M8 2.373 0.6 M9 2.373 0.6	
Asphalt mixture details: 14mm Dense Grade Asphalt Grading Type: Dense Nominal Mix Size: 14 Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density t/m³ 2.497 Maximum Density reference Sample Number S6822 S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.8 M7 2.379 0.6 M8 M9 2.373 0.6 M10 2.378 0.6 M10 0.6	Australia
Grading Type: Dense Nominal Mix Size: 14 Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density t/m³ 2.497 Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.8 M7 2.379 0.6 M8 2.373 0.6 M9 2.373 0.6 M10 2.378 0.6	
Binder Content: 5.9 % Type EME2 Binder Details reference sample N°: Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density t/m³ 2.497 Maximum Density t/m³ 2.497 Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) M6 2.377 0.6 M8 2.374 0.6 M10 2.378	mm
Sampling Method / Preparation: SAMPLING PROCEDURES FOR ASPHALT AS 2981.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density t/m³ 2.497 Maximum Density reference Sample Number \$6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.6 0.6 M8 2.373 0.6 0.6 M10 2.378	S6822
Sampling Method / Preparation: Sampling PROCEDURES FOR ASPHALT AS 2961.1 Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density t/m³ 2.497 Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.6 M8 2.374 0.6 M9 2.378 0.6 M10 2.378 0.6	
Determination of the Maximum Density of Asphalt - Water Displacement Method AS 289 Maximum Density t/m³ 2.497 Bulk Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Volds AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.6 M8 2.374 0.6 M10 2.378 0.6	
Maximum Density t/m³ 2.497 Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.8 1 M7 2.379 0.6 1 M8 2.374 0.6 1 M9 2.373 0.6 1 M10 2.378 0.6 1	1.7.1
Maximum Density reference Sample Number S6822 Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.8	
Bulk Density AS 2891.9.2 / Air Voids AS 2891.8 Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.8	
Specimen Number Bulk Density (t/m³) Water Absorbtion (%) Air M6 2.377 0.8	
M6 2.377 0.8 M7 2.379 0.6 M8 2.374 0.6 M9 2.373 0.6 M10 2.378 0.6	Voide (%)
M7 2.379 0.6 M8 2.374 0.6 M9 2.373 0.6 M10 2.378 0.6	4.8
M8 2.374 0.6 M9 2.373 0.6 M10 2.378 0.6	4.7
M9 2.373 0.6 M10 2.378 0.6	4.9
M10 2.378 0.6	5.0
2.010 0.0	4.7
Mean 2.376 0.6	4.8
Comments / Distribution Approved Signatory	
Name Mark Hongood	
This report replaces 17 S6852/1 Rectified error in Function Project Officer	15
manufacture date of the resilient modulus specimens Date 28/06/2017	
Document.71/05/2891.13.1 Issue:08/03/2017 TRIM:D14#630733 Main Ror	
	ds Western Australia
Accredited for compliance with ISO/IEC 17025 - Tecting	ids Western Australia
NATA ACCREDITATION No. 1989 SITE No. 1982 5-9	ids Western Australia Naterials Engineering
W	ids Western Australia Materials Engineering JG Punch Laboratory Colin Jamleson Drive
Technical Tel: 08 9323 474	ds Western Australia Materials Engineering JG Punch Laboratory Colin Jamieson Drive :LSHPOOL WA 6106

Figure L 3: Resilient modulus (ITT) results 17 S6852 (page 3) (26/04/17)

		ŧ	mainroads
TEST REPORT			ABN: 50 860 676 0 Sheet 3 of 4
Report No: 1	7 S6852 / 1	Reference No:	Not Applicable
Date Sampled:	26/04/2017	Date/s Tested	2/05/2017
Local Govt Authority:		City of Gospells	2/00/2017
Road Name:		Topkin Highway	2
Project/Contract No :	WARRIP EME2 Trial	Customer:	Mainroade WA
-		obstomer.	mainroads wA
Asphalt mixture details:		14 Dense Grade As	phalt
Grading Type:	ense No	ominal Mix Size:	14 mm
Binder Content: 5.9	% Type EME2	Binder Details reference	sample N°: S6822
Sampling Method / Preparatio	SAMPLING PROCED		2004 4
	COMPACTION OF AS	SPHALT USING A GYRATO	2981.1 RY COMPACTOR - AS 2891.2.2
Determination of	the Maximum Density of A	sphalt - Water Displaceme	nt Method AS 2891.7.1
	Ma	aximum Density t/m²	2 497
	Maximum Density refere	ence Sample Number	S6822
	Bully Describe 4.0.000		
	Bulk Density AS 289	1.9.2 / Air Voids AS 2891.8	
		Gyratory Cycles	100
	Temperature	e at Compaction (°C)	177
Specimen Number	Bulk Density (t/m ³)	Water Absorbtion (%	%) Air Voids (%)
1	2.429	0.3	2.7
2	2.420	0.3	3.1
3	2.416	0.3	3.2
M	020 2.422		
	5011 <u>2.422</u>	0.3	3.0
Comments / Distribution		Approved Signate	prv 1
TRIM 16/4441		, , , , , , , , , , , , , , , , , , ,	
REPORTS			
		Name Mark	Hopgood
		Date 4/05/2	CLONICER
Document:71/05/2891.13.1 Issue:08/0	3/2017 TRIM:D14#630733	4/00/2	Main Roads Western Australia
\mathbf{A}			Materials Engineering
NATA Accredited for complian	ce with ISO/IEC 17025 - Testing	9	JJG Punch Laborator
ACCREDITATION No.	1989 SITE No. 1982		5-9 Colin Jamieson Drive
ACCREMIED FOR			WELSHPOOL WA 6108
CONNECAL			Tel: 08 9323 4744 Fax: 08 9323 4766

Tel: 08 9323 4744 Fax: 08 9323 4766

Figure I 4.	Resilient modulus ((TTI)	results 17	S6852 (n	ane 4)	(26/04/17)
i igule L 4.	Resilient mouulus (,	results II	0003z (p	aye +)	(20/04/11)

		The second secon	mainroads		
TEST REPORT			ABN: 50 860 676 02 Sheet 4 of 4		
Report No: 1	7 S6852 / 1	Reference No:	Not Applicable		
Date Sampled:	26/04/2017	Date/s Testeri	1/05/2017		
Local Govt Authority:		Not Applicable	100/2017		
Road Name:	Not Applicable				
Project/Contract No :	WARRIP EME2 Trial	Customer: Main Roads Western Australia			
Asphalt mixture details:	14mm Dense Grade Asphalt				
Grading Type: D	Dense No	ominal Mix Size:	14 mm		
Binder Content: 5.9	% Type EME2	Pinder Details reference a	amala ki% CCODO		
binder oontene	Type LINE2	bilider Details reference sa	ample N°: S6822		
Sampling Method / Preparatio	In: SAMPLING PROCED	URES FOR ASPHALT - AS 29	81.1		
Determination of	COMPACTION OF A	SPHALT USING A GYRATORY	COMPACTOR - AS 2891.2.2		
	м	aximum Density t/m³	2 497		
	Maximum Density refere	ence Sample Number	S6822		
-			COULT		
	Bulk Density AS 289	1.9.3 / Air Voids AS 2891.8			
	Temperatur	Gyratory Cycles re at Compaction (°C)	100		
Specimen Number	Bulk Density (t/m ³	Air Voids (%)			
1	2.382	4.6			
2	2.385	4.5	-		
3	2.363	5.4			
N	lean 2.377	4.8			
Comments / Distribution		Approved Signatory			
RIM 16/4441			201		
CEPORIS					
		Name Mark Ho	opgood		
		Function Project	Officer		
ocument:71/05/2891.13.1 Issue:08/	03/2017 TRIM D14#630733	Date 5/04/20	1/		
	AAFAIL 11/100 01/0201/22		Main Roads Western Australia		
			Materials Engineering		
			JJG Punch Laboratory		
			5-9 Colin Jamieson Drive		

WELSHPOOL WA 6106

Tel: 08 9323 4744 Fax: 08 9323 4766

Figure L 5: Resilient modulus (ITT) results 17 S6853 (page 1) (27/04/17)

				🖉 mai	nroads	
ALL ALLER L				WESTER	RN AUSTRALIA	
TEST REPORT					ABN 50 860 676 021 Sheet 1 of 4	
Report No:	17 \$6853 / 1		Refe	erence No: Not	Applicable	
Date Sampled:	27/04/2017		Date	/s Tested : 28/4	- 1/5/2017	
Local Govt Authority:			City of Go	snells		
Road Name:			Tonkin Hi	ghway		
Project/Contract No :	WARRIP EM	E2 Trial (Customer:	Main Roads West	tern Australia	
Asphalt mixture details	3:	14mm Dense Grade As_halt				
Grading Type:	Dense	Dense Nominal Mix Size: 14 mr				
Binder Content:	6 % Type EM	E2 Binder	Details reference	e sample N°:	S6824	
Sampling Method / Pre	eparation: SAM	PLING PROCED	JRES FOR ASP	HALT AS 2981.1		
Determi	nation of the Resilient	Modulus of Aspl	alt - Indirect Te	nsile Method AS/NZS	2891.13.1	
Test conditions:	Standard reference te	st conditions used	6			
Other properties of the have influenced the r	he asphalt that may results					
Asphalt mixing temper	ature (°C)		176.8			
Temperature at compa	action (°C)		177			
Number of Gyratory Cy	ycles		Various			
Pressure in Modulus M	achine Accuator (kPa)		850			
Start of Conditioning til	me		7:50:00	9, Aug 19		
Date and Time of test			1/05/2017 11:28:00			
Conditioning Time (hours)			3.63			
Temp after conditioning	g (°C)		25.1			
Date of specimen man	ufacture		27/04/2017	7		
Specimen Number	Core Temperature of	Mean Diameter	Mean Height	Resilient Modulus of	Coefficient of	
Specimen Number	Specimen (°C)	(mm)	(mm)	Specimen (MPa)	Variation of Modulus	
M1	25.0	99.6	49.5	6394	1.24	
M2	25.0	99.5	49.8	7517	0.99	
M5	25.0	99.6	49.5	6562	0.88	
				· · · · ·		
	Mean	99.6	49.6	6,820	1.0	
		AS 28	91.2.2			
Gyratory Angle (*	·)2		Number of Cycle	s Various		
Comments / Distributio TRIM 16/4441 REPORTS	n		Appro Name Func Date	e Mark Hopgood Project Officer	A.	
Accredited for ACCREDITAT	ssue:08/03/2017 TRIM:D14# compliance with ISO/IEC 176 TION No. 1989 SITE No. 1982	630733 025 - Testing 2		Tel 08 93	ain Roads Western Australia Materials Engineering JJG Punch Laboratory 5-9 Colin Jamieson Drive WELSHPOOL WA 6106 23 4744 Fax: 08 9323 4766	

Figure L 6: Resilient modulus (ITT) results 17 S6853 (page 2) (27/04/17)

		ŧ	western AUSTRALIA	
TEST REPORT			ABN: 50 860 676 021 Sheet 2 of 2	
Report No:	17 S6853 / 1	Reference No	Not Applicable	
Date Sampled:	27/04/2017	Date/s Tested	28/4 - 1/5/2017	
Local Govt Authority:	City of Gosnells			
Road Name:	Tonkin Highway			
Project/Contract No :	WARRIP EME2 Trial	Customer:	lain Roads Western Australia	
Asphalt mixture details:	14mm Dense Grade Asphait			
Grading Type:	Dense Non	ninal Mix Size:	14mm	
Binder Content: 6	% Type EME2	Binder Details referer	ce sample N°: S6824	
Sampling Method / Preparati	ion: SAMPLING PR	OCEDURES FOR AS	PHALT AS 2981.1	
Determination o	of the Maximum Density of As	phalt - Water Displace	ment Method AS 2891.7.1	
	Мар	cimum Density t/m³	2.495	
	Maximum Density referen	ice Sample Number	S6824	
	Bulk Density AS 2891	.9.2 / Air Voids AS 28	391.8	
Specimen Number	Bulk Density (t/m ³)	Water Absorbtio	n (%) Air Voids (%)	
M1	2.371	0.6	5.0	
M2	2.379	0.7	4.7	
M5	2.376	0.6	4.0	
	Neen 9.275	0.6	4.8	
	Mean 2.375	0.6	4.6	
Comments / Distribution		Approved Sig	natory	
TRIM 16/4441				
		Name M	ark Hopgood	
		Function P	roject Officer	
		Date 4/	05/2017	
Document:71/05/2891.13.1 Issue:0	08/03/2017 TRIM:014#630733		Main Roads Western Australia Materials Engineering	
Accredited for comp	liance with ISO/IEC 17025 - Testing	a	JJG Punch Laboratory	
NATA ACCREDITATION N	lo. 1989 SITE No. 1982	-	5-9 Colin Jamieson Drive	
			WELSHPOOL WA 6106	
TECHNICAL			Tel: 08 9323 4744 Fax: 08 9323 4766	

Figure L 7:	Resilient modulus (ITT)	results 17	S6853 (pag	ue 3) (27/04/17)	۱
i iguic E i .	itesinent modulus (••••	icouito ir	ooooo (pag	je oj (zno n ni	1

MESTERN AUSTRALIA

A AUST				ADAL 57	0000000000
TEST REPORT				Sheet 3	of 4
Report No: 17	S6853 / 1	Reference I	No: Not	Applicable	
Date Sampled: 2	7/04/2017	Date/s Teste	d: 24	3/04/2017	
ocal Govt Authority:		City of Gos	City of Gosnells		
Road Name:		Tonkin Higi	hway		
Project/Contract No :	WARRIP EME2 Trial	Customer:	ustomer: Main Roads Western Aust		
Asphalt mixture details:	14mm Dense Grade Asphalt				
Grading Type: De	ense Non	ninal Mix Size:		14	mm
Binder Content 6.0 %	Type EME2	Binder Details refer	ence sample N°	S68	324
		Billion Bolaito Polo	onoe oumpient		
Sampling Method / Preparation	SAMPLING PROCEDU	RES FOR ASPHALT	AS 2981.1		
Determination of t	he Maximum Density of As	phait - Water Displac	ement Method	AS 2891.7.1	91.2.2
	Max Maximum Density of	cimum Density t/m³	2.	496	
	maximum Density referen	ice sample NumberL	50	024	
	Bulk Density AS 2891	9.2 / Air Voids AS 28	91.8		
	Tomporature	Gyratory Cycles	1	00	
	remperature	at compaction (C)[
Specimen Number	Bulk Density (t/m ³)	Water Absorbt	ion (%)	Air Voids	(%)
1	2.417	0.2		3.1	
2	2.409	0.3		3.5	
3	2.419	0.3		3.1	
				-	
M	ean 2.415	0.3		3.2	
Comments / Distribution		Annroved Si	anatory		
TRIM 16/4441		proved of		21	
REPORTS			X	Υ ,	
		Name	Mark Hopgood		
		Function	Project Officer		
Ocument:71/05/2891.13.1 Issue:08/0	3/2017 TRIM:D14#630733	Date	4/U5/2U1/	lain Roads Wes	tern Austral
•				Material	s Engineerin
Accredited for complian	ce with ISO/IEC 17025 - Testing	1		JJG Pun	ch Laborator
ACCREDITATION No.	1989 SITE No. 1982			5-9 Colin Ja	mieson Driv
				WELSHPO	OL WA 610
TECHNICAL			Tel: 08 9	323 4744 Fax: (08 9323 476

		Ż	WESTERN AUSTRALIA
TEST REPORT		1.4	ABN. 50 860 676 Sheet 4 of
Report No: 1	7 S6853 / 1	Reference M	lo: Not Applicable
Date Sampled: 2	7/04/2017	Date/s Teste	d: 28/04/2017
Local Govt Authority:	1.0001 00.000	Not Applic	able
Road Name:		Not Applica	able
Project/Contract No :	WARRIP EME2 Trial	Customer:	Main Roads Western Australia
Asphalt mixture details:		14mm Dense Gra	de Asphalt
Grading Type:D	ense Nor	minal Mix Size:	14 mr
Binder Content: 6.0 %	% Type EME2	Binder Details refere	ence sample N°: \$6824
Determination of	COMPACTION OF AS the Maximum Density of As	PHALT USING A GYR sphalt - Water Displac ximum Density t/m³[ATORY COMPACTOR - AS 2891.2.2 ement Method AS 2891.7.1 2.496
<u> </u>	Maximum Density referen Bulk Density AS 2891	nce Sample Number	\$6824 91.8
	Temperature	Gyratory Cycles at Compaction (°C)	100 177
Specimen Number	Bulk Density (t/m ³)	Air Voids (%)
1	2.371	5.0	
3	2.378	4.7	
	-		
M	lean 2.371	5.0	
Comments / Distribution		Approved Si	gnatory1
TRIM 16/4441 REPORTS		Name	Aarth Honorood
		Function	Project Officer
Decument 71/05/2004 40 4 Jac	00/2017 TRIMER 44020722	Date	5/04/2017
Document:/1/05/2091.13.1 ISSUE:08/	03/2017 TRIM:D14#030733		Main Roads Western Austra Materials Engineer

Figure L 8: Resilient modulus (ITT) results 17 S6853 (page 4) (27/04/17)

Main Roads Western Australia Materials Engineering JJG Punch Laboratory 5-9 Colin Jamieson Drive WELSHPOOL WA 6106 Tel: 08 9323 4744 Fax: 08 9323 4766

APPENDIX M RICHNESS MODULUS

Table M 1: Mix constituents and properties (26/04/17)

AS sieve size (mm)	Percent passing for Downer Group specimens (%)				Density for Downer Group specimens (t/m³)			
	A56278	A56280	A56282	A56287	A52678	A52680	A52682	A52687
26.5	100	100	100	100	2.499	2.498	2.492	2.498
19	100	100	100	100				
13.2	99	99	99	98				
9.5	88	88	88	88				
6.7	69	69	70	72				
4.75	53	55	55	57				
2.36	35	36	37	37				
1.18	23.1	24.2	25.2	24.3				
0.6	16.1	16.9	17.9	17.1				
0.3	10.7	11.2	12.1	11.6				
0.15	7.1	7.1	8.1	7.9				
0.075	4.5	4.1	5.2	5.3				
]			
Bitumen content (% by mass of total mix)	6.0	6.0	5.9	5.9				

Source: Based on laboratory data from Downer Group.

Table M 2: Richness modulus calculations (26/04/17)

Richness modulus	Result for Downer Group specimens*						
variables	A56278 / A52678	A56280 / A52680	A56282 / A52682	A56287 / A52687			
α	1.06	1.06	1.06	1.06			
G (%)	34.28	33.87	33.08	31.08			
S (%)	24.78	24.04	22.31	20.71			
s (%)	5.00	5.73	5.57	5.07			
f (%)	4.50	4.10	5.20	5.30			
Σ	8.01	7.48	9.06	9.11			
Richness modulus (K)	3.97	4.02	3.79	3.80			

* Density measurements were assumed to align to the asphalt report numbers in the format, asphalt test report no. / max density test report no.

Table M 3: Mix constituents and properties (27/04/17)

AS sieve size (mm)	Percent passi	ng for Downer Gr (%)	oup specimens	Density for Downer Group specimens (t/m³)		
	A56291	A56289	A56293	A52691	A52689	A52693
26.5	100	100	100	2.493	2.485	2.488
19	100	100	100			

AS sieve size (mm)	Percent passing for Downer Group specimens (%)			Density for Downer Group specimens (t/m³)		
	A56291	A56289	A56293	A52691	A52689	A52693
13.2	96	100	98			
9.5	88	87	88			
6.7	68	72	71			
4.75	54	57	56			
2.36	37	38	37			
1.18	25.3	24.8	24.1			
0.6	18.1	17.1	17			
0.3	12.6	11.4	11.7			
0.15	8.7	7.5	8.1			
0.075	6	4.9	5.5			
Bitumen content (% by mass of total mix)	5.8	6.1	6.0			

Source: Based on laboratory data from Downer Group.

Table M 4: Richness modulus calculations (27/04/17)

Diehnese medulus veriables	Result for Downer Group specimens*				
Richness modulus variables	A56278 / A52678	A56280 / A52680	A56282 / A52682		
α	1.06	1.07	1.07		
G (%)	34.87	31.08	32.08		
S (%)	23.57	20.98	21.58		
s (%)	5.30	5.20	5.00		
f (%)	6.00	4.90	5.50		
Σ	10.27	8.53	9.43		
Richness modulus (K)	3.64	3.97	3.83		

* Density measurements were assumed to align to the asphalt report numbers in the format, asphalt test report no. / max density test report no.

APPENDIX N VOIDS IN COMPACTED DRY FILLER AND DELTA RING AND BALL TEST RESULTS

Figure N 1: ARRB voids in dry compacted filler test report (16-8-3)

TEST REPORT

Report No: 16-8-3 Client: MRWA Sample Description: EME2 Filler

Apparent Particle Density of Filler

AS/NZS 1141.7

ARRB Sample No:	Mean Particle Density (t/m3)
5198	2.770

Voids in Dry Compacted Filler

AS/NZS 1141.17

ARRB Sample No:	Mean Voids (%)	
5198	33	

Dilatometeric liquid used: Kerosene

This report relates specifically to the sample tested as supplied

Approved S	ignatory: hos	sei	Date:	11/08/17
NATA Accredited Laboratory Number: 9994	Accredited for compliance with ISO/IEC 17025 - Testing The results of the tasts, colibrations and/or measurements included in this document are traceable to Australian/mational standards.	AUSTRALIAN ROAD RESEARCH BOARD	ARRB Greap Ltd ACN 004 520 851 ANN 88 044 620 651 500 Burwood Highesy Vermont South VC 3133 Australia Tet: 23 9861 1555 Fax: 23 9867 6104	Issue E Authorised by Shannon Malone RR-422-10-141 Thite document shall not be reproduced, except in full. Page 1 of 1

Figure N 2: ARRB delta ring and ball test report (16-8-6)

TEST REPORT

Delta ring and ball test EN 13179-1 & AS 2341.18

ARRB Report #:	16-8-6	Client:	MRWA
Bitumen Sample #:	5199	Supplied by:	Client
Bitumen Class and Date Sampled:	26/04/17	Quantity:	2L
Identifying #, Batch # and place sampled:	Plant Downer, EME2 5,000 L, Lab 3230	Tonkin Hwy, 10:38am,	173.5 °C, 1 tonne, tin 2/2,

ARRB Sample No.	Client Sample No.	Softening Point (°C)
5199	N/A	72.5

Sample #:	5198	Client:	MRWA		
Supplied by:	Client	Description:	EME2 filler		

ARRB Sample No.	Client Sample No.	Softening Point (°C)
5199 & 5198	N/A	76.0

Δr a b	3.5 °C

Notes:

- · This report relates specifically to the samples tested as supplied
- Mastic blend created as required by EN 13179-1
- Softening point tests conducted in accordance with AS 2341.18
- Water method used for determination of softening point

Approved Signatory:

Ennor (Shannon Malone)

Date: 11/08/17

ARRB Group Ltd ACN 004 620 651 ABN 68 004 630 651 500 Burvood Highway Vermant South VIC 3133 Australia Tel: 03 9881 1555 Fax: 03 6887 8104

Issue A Authorised by Shannon Maione RR-422-1-0-276 Page 1 of 1

)ow	ner		Nationa 125-12 Somert Ph: (03	al Research and D 9 Somerton Road on Vic 3062) 9930 4844	evelopment Laborat
		VOIDS IN COMPA AS1141.7,	CTED DRY FILLE AS1141.17	R	
Re	port No:	RD14/05 WEME DCV	Client Ref:	-	
Sa	mple Description:	Filler fraction of Gosnells dust	Client Name and Address:	Warren Carte Rhondda Ro	ar ad
Sa	mple Source:	Downer, WA	Sample Te	Teralba NSW ested as Received	/ 2284
	Apparent Particle	density of filler (t/m³)		2.848	
F	Percentage voids in AS	dry compacted filler (%)	40.3	40.1	40.4
	Mean Voids in dry	compacted filler (%)		40	
NATA	Accredited for	compliance with ISO/IEC	17025 APPROVED	SIGNATORY: H	teny Bel
NATA NATA CONDICTOR TECHNICAL COMPETENCE	Accredited for	compliance with ISO/IEC ted Laboratory Number: 1	17025 APPROVED 5351 DATE: 03, CHECKED:	SIGNATORY: Her 08/20(7 Ben Van den Eynd	terry Bel ny Beh e

Figure N 3: Downer Group voids in dry compacted filler test report (RD 14/05 WEME DCV)

Figure N 4: Downer Group delta ring and ball test report (RD 14/05 WEMEA)

wner	Ι	National Resea 125-129 Somer Somerton VIC 3 Ph: (03) 9930 4	rch and Development Labo ton Road 3062 844
	BIND	DER TEST REPORT	
Report No:	RD14/05 WEME	EΔ Client Ref: -	
Sample Source:	-	Client Address: Wa Rho Terr	rren Carter ondda Road alba NSW 2284
Test Type	Reference Standard	Sample	Results
Softening Deint	AC-DT/T121	C170	47.5°C
Solitening Point	AG.P1/1131	C170 with filler fraction of Gosnells d	ust*^ 62.0°C
	Δ _{rab} (ef	V13179-1)^ Spec**	
	Δ _{R&B} (ΕΝ	V13179-1)^ Spec** .5 °C 8°C - 16°C	
	Δ _{R&B} (ΕΝ 14	V13179-1) ^A Spec ^{**} .5 °C 8°C - 16°C	
	Δ _{R&B} (ΕΡ 14	N13179-1) ^A Spec ^{**} .5 °C 8°C - 16°C	
	Δ _{R&B} (ER 14	V13179-1) ^A Spec ^{**} .5 °C 8°C - 16°C	
	Δ _{R&B} (ΕΝ	N13179-1) ^A Spec** .5 °C 8°C - 16°C	
Comments: ^EN13179-1 not in * Sample prepared **Specification act	A _{R&B} (ER 14	V13179-1)^ Spec** .5 °C 8°C - 16°C sreditation. S107 point of bitumen and softening point of	bitumen
Comments: ^EN13179-1 not in * Sample prepared **Specification ac Δ _{R&B} = Difference with added mastic	Δ _{R&B} (EN 14	V13179-1)^ Spec** .5 °C 8°C - 16°C creditation. ST07 point of bitumen and softening point of	fbitumen
Comments: ^EN13179-1 not in * Sample prepared **Specification ac Δ _{R&B} = Difference with added mastic	ARAB (ER 14	V13179-1)^ Spec** .5 °C 8°C - 16°C sreditation. S107 point of bitumen and softening point of ISO/IEC 17025	f bitumen GNATORY: Ben Van Den Evr
Comments: ^EN13179-1 not in * Sample prepared **Specification act Δ _{R&B} = Difference with added mastic	Δ _{R&B} (E) 14 14 NATA scope of acc 1 as per EN13179-1 cording to TMR PST between softening p COMPLIANCE WITH ED LABORATORY NUM	V13179-1)^A Spec** .5 *C 8*C - 16*C screditation. *S107 point of bitumen and softening point of ISO/IEC 17025 APPROVED SM MBER: 15351 DATE: 04/08/20	f bitumen GNATORY: Ben Van Den Eyr 2017
Comments: ^EN13179-1 not in * Sample prepared **Specification ac Δ _{R&B} = Difference with added mastic ACCREDITED FOR NATA ACCREDITE	ARAB (EN 14	V13179-1)^A Spec** .5 °C 8°C - 16°C creditation. S107 point of bitumen and softening point of ISO/IEC 17025 APPROVED SM MBER: 15351 DATE: 04/08/20 CHECKED: Pet	f bitumen GNATORY: Ben Van Den Eyr 117 Iar Davcey

Figure N 5: Main Roads voids in dry compacted filler and delta ring and ball test report (\$8933)

				Mainroads
MINERAL FILLER TEST REPOR	٤٣		1	Page 1 of 1
Report No : 17 S89	33 /1	Customer:	Main Roads W	/estern Australia
Project / Contract :		EME	2 Trial	
Other Details / Information :		Not As	plicable .	
	Aaph	alt Filler Properties	1	
Filler Supplier :	Downer - Martin		Date/s Filler Tested :	19/06/2017
Name / Type of Filler :	Baghouse Dust		Date Filler Sampled :	Not Supplied
Filler Sampling Method :		Supplied by Others	, Tested as Received	
Other Filler Details / Information :		Rece	ved 07/34/2017	
AS 1141.7 - Apparent Particle D	onsity of Filler			
Dilatometric Liquid Used : Disf	illed Water			
			1	
	Apparent Particle Density of Filles (Vm ²)	2.759		
AS 1141.17 - Volds in Dry Coraj	pacted Filler			
	Voids in Dry Compacted Filler (%) 37.7]	
	Stiffening Effect of Filler	Aggregate Whan	Mixed With Binder	
Binder Supplier :	BP - Kwinana		Date/s Binder Tested :	28/07/2017
Name / Type of Binder :	S6100 / Class 170 Bitum	in .	Date Binder Sampled :	26/04/2016
Binder Sampling Method :		Supplied by Others,	Tested as Received	
Other Binder Details / Information	:	N	ot Applicable	
Asphalt Filler : As Above				
Sample Preparation :	EN 13179-1 Tests for Fills	er Aggregate in Bitur	minous Mixes - Part 1: Delta Ring	and Ball Test
Asphalt Filler / Binder Blend by Vo	iume :	37.5% Asphalt	Filler Aggregate and 62.5% Bind	ler
AS 2341.18 - Determination of §	oftening Point - Ring and Ball Meth	00		
	Softening Point Of Binder (°C)	49.5]	
	Softening Point of Binder / Filler Blend ("C)	67.5]	
	Stillening Effect of the Filler Aggregate (*C) Calculated in accordance with EN 13179-	18.0]	
Comments / Distribution Reports TRIM 16/4441			Approved Signatory:	51.
			Function: Name: Date:	Project Officer Mark Hopgood 9/08/2017
Determent 71/05/2341.2 Issue 22/03/2017 TXU	A D144629298			Main Roads Western Austral

Main Roads Weslem Australia Meterlais Engineoring Branch JJG Punch Laboratory 5-9 Colin Jamisson Drive WELSHPOOL WA 6106 Tet: 06 9323 4744 Fax: 08 9323 4766

APPENDIX O HAMBURG WHEEL TRACK RESULTS

Cycles	DY S1	DY S2	TH S1	TH S2	DY C19A & 19B	DY C20A & 20B	TH C1 & 2	TH C3 & 4	TH C5 & 6	TH C7 & 8
Cycles					Cer	ntral rut depth (mm)			
1	0	0	0	0	0	0	0	0	0	0
2	0.01	0.06	0.02	-0.02	0.05	0.03	0.01	0.05	0.05	0.09
3	0.03	0.09	0.14	0.07	0.12	0.05	0.09	0.08	0.08	0.16
4	0.07	0.14	0.05	0.06	0.11	0.04	0.08	0.12	0.13	0.27
5	0.10	0.12	0.11	0.09	0.18	0.08	0.11	0.13	0.19	0.36
6	0.07	0.16	0.09	0.08	0.15	0.07	0.21	0.15	0.22	0.31
7	0.16	0.18	0.15	0.14	0.24	0.15	0.26	0.28	0.25	0.34
8	0.14	0.16	0.10	0.13	0.32	0.16	0.21	0.24	0.28	0.40
9	0.18	0.21	0.12	0.14	0.28	0.16	0.25	0.26	0.33	0.43
10	0.19	0.23	0.16	0.10	0.35	0.18	0.29	0.31	0.33	0.45
20	0.31	0.49	0.24	0.23	0.47	0.26	0.46	0.51	0.54	0.70
30	0.38	0.66	0.26	0.34	0.61	0.37	0.54	0.61	0.69	0.84
40	0.45	0.73	0.35	0.38	0.74	0.45	0.75	0.73	0.80	0.94
50	0.45	0.67	0.45	0.44	0.83	0.39	0.86	0.78	0.88	1.04
60	0.51	0.78	0.49	0.49	0.93	0.38	0.84	0.87	0.95	1.12
70	0.59	0.90	0.47	0.51	1.00	0.52	0.82	0.91	1.02	1.19
80	0.60	0.84	0.53	0.56	1.08	0.57	0.86	0.95	1.09	1.30
90	0.58	0.82	0.49	0.58	1.14	0.76	1.06	0.96	1.14	1.33
100	0.65	0.97	0.54	0.63	1.19	0.78	0.92	0.95	1.21	1.41
200	0.82	1.16	0.67	0.87	1.58	0.79	1.27	1.08	1.60	1.82
300	0.93	1.34	0.81	0.92	1.84	0.88	1.56	1.27	1.97	2.11
400	1.00	1.51	0.87	1.34	2.08	1.22	1.51	1.43	2.08	2.27
500	1.01	1.47	0.96	1.47	2.27	1.23	1.81	1.70	2.18	2.34
600	1.09	1.61	1.04	1.57	2.58	1.61	2.01	1.76	2.31	2.71
700	1.21	1.85	1.11	1.69	2.57	1.54	1.88	1.85	2.42	2.80
800	1.16	1.76	1.22	1.71	2.69	1.85	2.00	1.86	2.52	2.93
900	1.17	1.78	1.14	1.63	2.76	1.68	2.05	1.93	2.66	3.03
1000	1.27	2.03	1.13	1.51	3.00	2.03	2.22	2.00	2.63	2.91
1100	1.30	2.00	1.17	1.65	3.07	2.08	2.16	2.03	2.72	3.09
1171	1.38	2.06	1.22	1.66	3.16	2.09	2.14	2.07	2.78	3.25
1200	1.41	2.05	1.21	1.61	3.27	2.31	2.06	2.11	2.81	3.20
1300	1.39	2.07	1.19	1.73	3.39	2.25	2.27	2.17	2.85	3.21
1400	1.37	2.04	1.23	1.83	3.46	2.54	2.23	2.27	2.87	3.30
1500	1.41	2.09	1.33	1.83	3.60	2.47	2.42	2.29	2.90	3.17
1561	1.42	2.10	1.24	1.78	3.62	2.52	2.30	2.33	2.97	3.44

Table O 1: Hamburg wheel track testing results by cycle

	1									
Cycles	DY S1	DY S2	TH S1	TH S2	DY C19A & 19B	DY C20A & 20B	TH C1 & 2	TH C3 & 4	TH C5 & 6	TH C7 & 8
				4.0-	Cer	ntral rut depth (mm)			
1600	1.45	2.12	1.27	1.87	3.61	2.48	2.48	2.36	2.95	3.41
1700	1.48	2.15	1.31	1.77	3.57	2.59	2.51	2.38	3.03	3.43
1800	1.54	2.13	1.33	1.74	3.66	2.61	2.56	2.50	3.10	3.54
1900	1.59	2.25	1.35	2.05	3.70	2.50	2.42	2.50	3.18	3.69
2000	1.56	2.24	1.37	2.08	3.76	2.58	2.55	2.66	3.24	3.73
2100	1.63	2.33	1.53	2.15	3.75	2.54	2.45	2.71	3.30	3.80
2200	1.66	2.31	1.55	2.16	3.79	2.61	2.75	2.71	3.36	3.79
2300	1.66	2.35	1.47	2.27	3.83	2.67	2.63	2.82	3.41	3.89
2400	1.70	2.39	1.47	1.99	4.17	3.04	2.71	2.82	3.46	3.90
2500	1.68	2.36	1.47	2.04	4.12	2.81	2.56	2.71	3.49	3.97
2600	1.70	2.45	1.50	2.10	4.22	2.91	2.96	2.85	3.47	3.91
2700	1.81	2.48	1.65	2.24	4.37	3.04	2.85	2.83	3.50	3.97
2800	1.88	2.55	1.50	2.20	4.26	2.93	2.54	2.85	3.56	4.01
2900	2.02	2.68	1.52	1.97	4.41	3.03	2.75	2.86	3.62	3.99
3000	1.98	2.66	1.58	2.19	4.47	3.21	2.71	2.87	3.69	4.04
3100	1.86	2.58	1.65	2.20	4.71	3.36	2.76	2.89	3.63	3.96
3200	2.01	2.73	1.63	2.19	4.64	3.40	2.94	2.97	3.65	3.97
3300	2.03	2.78	1.58	2.01	4.87	3.46	2.85	3.00	3.66	3.95
3400	2.02	2.79	1.55	1.99	4.98	3.66	2.61	2.95	3.72	4.02
3500	1.97	2.79	1.69	2.45	4.81	3.52	2.97	3.01	3.71	3.94
3600	2.05	2.74	1.61	2.33	5.11	3.68	2.59	2.97	3.80	4.07
3700	2.03	2.77	1.61	2.05	5.07	3.82	2.90	3.09	3.81	4.05
3800	2.13	2.84	1.57	2.10	5.12	3.82	2.90	3.00	3.83	4.13
3900	2.12	2.88	1.69	2.11	5.32	4.09	3.15	3.13	3.88	4.19
4000	2.14	2.88	1.63	2.01	5.34	3.91	3.24	3.21	3.90	4.11
4100	2.12	2.88	1.63	1.99	5.34	3.87	3.06	3.28	3.97	4.28
4200	2.10	2.89	1.63	2.12	5.49	4.16	2.98	3.28	4.01	4.30
4300	2.18	2.90	1.64	1.97	5.44	3.99	3.05	3.28	3.96	4.09
4400	2.15	2.95	1.66	2.33	5.52	4.31	2.80	3.26	3.97	4.27
4500	2.13	2.98	1.63	2.26	5.55	4.33	3.26	3.33	3.92	4.15
4600	2.07	2.99	1.64	1.90	5.65	4.44	3.21	3.31	3.92	4.11
4700	2.16	2.97	1.72	2.35	5.62	4.30	3.03	3.34	3.93	4.04
4800	2.09	2.96	1.72	2.19	5.72	4.36	3.05	3.28	3.97	4.19
4900	2.14	3.03	1.66	1.93	5.72	4.50	2.88	3.26	3.98	4.10
5000	2.08	2.98	1.67	1.96	5.69	4.33	3.33	3.31	3.98	4.14
5100	1.98	2.87	1.67	2.32	5.70	4.54	3.20	3.28	3.99	4.16
5200	2.06	2.99	1.70	2.24	5.81	4.48	3.15	3.38	4.02	4.06
5300	2.05	2.97	1.70	2.25	5.68	4.45	3.32	3.34	4.05	4.23

	D Y 04	DV 00	TU 04	TU 00			TH 04 0 0	TH 00.0 4	TU 05 0 0	TU 07 0 0
Cycles	DY S1	DY S2	IH S1	TH 52	DY C19A & 19B		1H C1 & 2	TH C3 & 4	1H C5 & 6	IH C/ & 8
5400	2.00	2.00	1.00	0.45	Cer	itrai rut depth (mm)	2.24	4.00	4.40
5400	2.00	3.00	1.00	2.10	5.00	4.51	3.11	3.31	4.00	4.12
5000	2.05	3.01	1.72	2.32	0.0Z	4.04	3.21	3.49	4.00	4.19
5000	2.10	3.02	1.09	2.38	0.00	4.59	3.00	3.44	4.13	4.22
5700	2.08	2.96	1.75	2.48	5.87	4.00	3.03	3.31	4.16	4.30
5800	2.20	3.14	1.76	2.21	5.81	4.45	3.15	3.47	4.16	4.28
5900	2.18	3.11	1.76	2.32	5.91	4.76	3.28	3.47	4.18	4.30
6000	2.19	3.09	1.78	2.33	5.85	4.48	3.27	3.51	4.17	4.28
6100	2.19	3.19	1.76	2.32	5.98	4.68	3.09	3.54	4.15	4.15
6200	2.21	3.16	1.76	2.31	6.02	4.71	3.30	3.54	4.21	4.19
6300	2.28	3.19	1.75	2.40	6.03	4.75	3.11	3.52	4.19	4.29
6400	2.20	3.12	1.75	2.56	6.07	4.67	3.06	3.58	4.20	4.29
6500	2.24	3.18	1.76	2.43	6.09	4.72	3.51	3.64	4.20	4.25
6600	2.35	3.24	1.73	2.53	6.10	4.83	3.23	3.64	4.25	4.25
6700	2.29	3.14	1.77	2.40	6.10	4.81	3.45	3.62	4.23	4.30
6800	2.37	3.28	1.78	2.42	6.11	4.70	3.31	3.58	4.22	4.28
6900	2.23	3.20	1.79	2.36	6.01	4.82	3.37	3.63	4.27	4.26
7000	2.32	3.35	1.78	2.47	6.17	4.75	3.52	3.70	4.23	4.29
7100	2.37	3.28	1.81	2.46	6.04	4.83	3.34	3.75	4.23	4.16
7200	2.43	3.43	1.81	2.28	6.11	4.73	3.43	3.71	4.23	4.26
7300	2.39	3.30	1.81	2.44	6.25	4.87	3.38	3.73	4.26	4.15
7400	2.36	3.32	1.82	2.45	6.34	4.96	3.41	3.74	4.30	4.29
7500	2.35	3.34	1.82	2.58	6.27	4.85	3.29	3.85	4.25	4.16
7600	2.35	3.32	1.80	2.31	6.36	4.93	3.43	3.88	4.28	4.32
7700	2.36	3.24	1.83	2.41	6.33	4.93	3.50	3.98	4.33	4.29
7800	2.27	3.24	1.83	2.47	6.40	5.00	3.26	3.94	4.33	4.24
7900	2.29	3.22	1.84	2.47	6.28	4.99	3.30	3.93	4.35	4.37
8000	2.27	3.23	1.83	2.53	6.32	5.03	3.26	3.96	4.34	4.34
8100	2.19	3.15	1.83	2.55	6.43	4.96	3.47	4.02	4.36	4.33
8200	2.41	3.32	1.83	2.44	6.46	5.02	3.66	3.98	4.36	4.27
8300	2.33	3.18	1.85	2.56	6.51	5.09	3.38	3.96	4.37	4.28
8400	2.31	3.18	1.87	2.48	6.44	5.14	3.43	4.00	4.40	4.38
8500	2.28	3.18	1.88	2.48	6.48	5.10	3.45	3.95	4.50	4.44
8600	2.37	3.28	1.88	2.60	6.50	5.14	3.43	4.00	4.41	4.39
8700	2.30	3.33	1.87	2.50	6.54	5.16	3.58	3.94	4.43	4.40
8800	2.30	3.20	1.86	2.53	6.56	5.16	3.51	3.96	4.49	4.40
8900	2.40	3.35	1.92	2.45	6.54	5.16	3.57	3.97	4.46	4.41
9000	2.29	3.31	1.90	2.56	6.59	5.17	3.41	4.02	4.49	4.36
9100	2.36	3.40	1.90	2.45	6.65	5.15	3.62	4.01	4.50	4.45

Cualas	DY S1	DY S2	TH S1	TH S2	DY C19A & 19B	DY C20A & 20B	TH C1 & 2	TH C3 & 4	TH C5 & 6	TH C7 & 8
Cycles					Cer	ntral rut depth (mm)			
9200	2.30	3.35	1.92	2.50	6.64	5.24	3.38	4.07	4.52	4.42
9300	2.38	3.47	1.95	2.55	6.66	5.22	3.53	4.07	4.54	4.42
9400	2.35	3.35	1.94	2.60	6.73	5.17	3.37	4.09	4.54	4.35
9500	2.40	3.41	1.92	2.56	6.76	5.27	3.60	4.10	4.54	4.38
9600	2.39	3.41	1.94	2.61	6.63	5.21	3.35	4.14	4.59	4.50
9700	2.51	3.48	1.91	2.53	6.68	5.27	3.45	4.19	4.62	4.47
9800	2.43	3.51	1.94	2.54	6.75	5.19	3.61	4.18	4.63	4.44
9900	2.43	3.42	1.92	2.61	6.78	5.35	3.58	4.26	4.64	4.41
10000	2.37	3.40	1.97	2.47	6.79	5.37	3.57	4.23	4.66	4.39

Note: DY = Downer Group yard, TH = Tonkin Hwy, S = slab, C = core

WEARING COURSE RESULTS

2

Figure P 1: Asphalt placement worksheet (KEE Group)

APPENDIX P

Date: 3/5/17		Chill Factor -Bay-Night	Chill Factor Day/ Night	Depth Äve. Lane/ Run Comments (mm)	So :3 -	SO.3 1	2tf.1 1	1 4.12	- 52-3 I	1 8.24	2 8.8t	48.8 2	H8.3 Z	1132.11		
		P	P	Ndth Area	S.H. Z.	9.9 165.6	8.061 9.	861 9.	4.461 3.	.6 28.8	OL 8.	S112	122 S.	012 5.0		
WBHO		Wind Spee	Wind Spee	Length W	19	46 3	53 3	55 3	54 3	8 3	25 2	32 3	64 3	60 3		
Customer:				t CH. Finish	21129	9 21175	5 21228	8 21283	521337	7-21345	521110	24112	221206	021266		
		oad Temp (°C)	(oad Temp (°C)	mp (°C) CH. Star	70 21110	11 2112	72 2117	73 2122	69 2128	10 2133	62 2108	11 21110	70 21/4	73 2120		
	Kelvin Ro	18°C	E	Time To	8:53 (Ţ	9:14	9:30 1	191:01	1 14:01	11:32 (IJ	12.03 1	12.22		
AISE	in Hway &	Air Temp (°C)	Air Temp (°C)	Progressive Tonnes	25.06	Ę	49.86	74.31	98.73	123.44	t,	ж	111-111	I-15.49		
2214	Tonk	8:53		Fonnes	25.06	ح	24:80	24:45	24.42	24.71	¥	×	26.00	26.05		
Material:	Location:	Time	Time	Docket Number	081037	2	081038	061039	440180	Stion 80	=	2	081046	681047		

Figure P 2: Asphalt test report NA 25234 (Downer Group)

ASPHALT TEST REPORT

Laboratory Quarry Road Martin WA 6110 Phone: (08) 9391 3012 Fax: (08) 9391 3098

Administration PO Box 145 Maddington WA 6989 Issue Date 03/05/2017 Phone: (08) 9365 9999 Fax: (08) 9365 9900 Job No: 62160070XB

Report No: NA 25234 Project: Client: Kee Asphalt Job Site:

Tonkin Hwy & Kelvin Rd, Maddington

Product:	14mm	Granite MRWA In	tersection Mix - A15E	75Blow (JM13-DEW	/-14IM)
Sample ID		A56352	A56353	Specification	
Date Sampled		03/05/2017	03/05/2017	JM 13 - DEW - 141M	

Date Tested	03/05/2017	03/05/2017	Specification Limits
Percent Passing Seives			
26.5	100	100	100
19.0	100	100	100
13.2	97	97	91-100
9.50	85	83	76-90
6.70	71	69	61-75
4.75	59	57	48-62
2.36	40	39	32-42
1.18	26.0	25.6	21-31
0.600	17.8	17.7	15-23
0.300	11.7	11.8	8-16
0.150	7.6	7.8	5-10
0.075	5.0	5.1	3.0-5.5
Binder Content (%)	5.0	5.0	4.4-5.0
Maximum Density(T/m3)	2.502	2.498	-
Bulk Density (T/m3)	2.397	2.398	-
Air Voids (%)	4.2	4.0	4.0-7.0
VMA (%)	16.0	15.8	14.0 Min
VFB (%)	73.6	74.6	-
Stability (kN)	14.9	15.3	8.0 Min
Flow (mm)	3.9	3.9	2-4
Compaction (Blows)	75.0	75.0	
Compaction Temp (°C)	161.1	159.8	

Test Method:

Sample Method: MRD WA: 701.1 - Ex Plant MRD WA 210.1, 730.1, 731.1, 732.2, 733.1.

Approved Signatorya

Comments:

TECHNICAL COMPETENCE

NATA Accredited Laboratory Number: 13125

Accredited for compliance with ISO/IEC 17025.

This document shall not be reproduced except in full.

Page 1 of 1

Tim Giles

Laboratory Quarry Road Martin WA 6110 Phone: (08) 9391 3012

Fax: (08) 9391 3098

Phone: (08) 9365 9999

Fax: (08) 9365 9900

Administration

PO Box 145 Maddington WA 6989

Figure P 3: Asphalt test report NA 25237 (Downer Group)

ASPHALT TEST REPORT

Report No: NA 25237 Project: Client: Kee Asphalt

Job Site: Tonkin Hwy & Kelvin Rd, Maddington

Product: 14mm Granite MRWA Intersection Mix - A15E 75Blow (JM13-DEW-14IM)

Issue Date 03/05/2017

62160070XB

Job No:

Sample ID	A56357	Specification				
Date Sampled	03/05/2017	JM 13 - DEW - 14IM				
Date Tested	03/05/2017	Specification Limits				
Percent Passing Seives						
26.5	100	100				
19.0	100	100				
10.0		0.1.100				

19.0	100	100
13.2	99	91-100
9.50	90	76-90
6.70	74	61-75
4.75	58	48-62
2.36	37	32-42
1.18	24.6	21-31
0.600	17.2	15-23
0.300	11.7	8-16
0.150	7.9	5-10
0.075	5.2	3.0-5.5
Binder Content (%)	4.4	4.4-5.0
Maximum Density(T/m3)	2.510	-
Bulk Density (T/m3)	2.372	-
Air Voids (%)	5.5	4.0-7.0
VMA (%)	15.6	14.0 Min
VFB (%)	65.0	-
Stability (kN)	12.4	8.0 Min
Flow (mm)	3.9	2-4
Commontion (Diama)		
Compaction (Blows)	75.0	
Compaction (Blows) Compaction Temp (°C)	75.0 160.8	

Test Method:

Comments:

Sample Method: MRD WA: 701.1 - Ex Plant MRD WA 210.1, 730.1, 731.1, 732.2, 733.1.

NATA Accredited Laboratory Number: 13125

Accredited for compliance with ISO/IEC 17025.

This document shall not be reproduced except in full.

Approved Signatory:

Page 1 of 1

Laboratory Quary Road Martin WA 6110 Phone: (08) 9391 3012 Fax: (08) 9391 3098	Administration PO Box 145 Maddington WA 6989 Phone: (08) 9365 9999 Fax: (08) 9365 9900			r Density Core Height Ratio % (mm)	99.3 53	100.0 49	93.8 53	100.0 52	98.0 51	100.7 57	77.1 50	00 0 0 0 0 FE	100 8 55	CC 2.001	4	//0			NATA Accredited Laboratory Number: 13125 Accredited for compliance with ISO/IEC 17025 This document shall not be
				Insitu Ai Voids %	5.2	4.6	10.5	4.6	6.4	3.9	0.4	2.0	2 1 C		Spec 50	1.67 NIM			
		05/05/2017 62160070XB	(I)	Core Density (t/m3)	2.372	2.388	2.240	2.389	2.342	2.406	2.368	2.3/2	100.7	2.411	alue			A56357	
		lssue Date: Job No:	M-13-DEW-141	Mix Maximum Density (t/m3)	2.503	2.503	2.503	2.503	2.503	2.503	2.503	2.503	2.303	CUC.2	Characteristic V	71.0	_	A56353	
			A15E 75 Blow (J	Mix Bulk Density (t/m3)	2.389	2.389	2.389	2.389	2.389	2.389	2.389	2.389	2.307	2.367	Multiplier	0.75	ore lactions	A56352	2
		5	srsection Mix -	Offset RHS (m)	2.9	1.9	4.9	1.5	5.5	2.3	4.0	2.4	<u>-</u>	1.4	STDEV	2.0	approximate c	Aix Sample IDs	in the 03/05/20 s received Vax Coating)
Ccess		Rd, Maddingto	te MRWA Inte	Chainage	30	48	63	87	113	131	153	174	841	232	Average	99.1 5 A	52.5 e drawing for (Reference A	Asphalt laid o lient, tested a:
os creating su	IEST REPORT	NA 25352 phalt Hwy & Kelvin	14mm Grani	Date Laid	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/09/201/			m) attached sit		04/05/2017 05/05/2017 Sampled by C ED WA 705.1, 7
tionship	I CORE 1	: Kee As Tonkin		Core	-	2	m	4	5	9	~	ω (~ ·	0	Data	ntio (%)	er to the	.5	pled: ed: ethod: { ods: MR
Relar	AVEMENT	Report No Project: Client: Job Site:	Product:	sample D	A56383	A56383	A56383	tatistical	Density Ro	Core Thick	Comment	Date Sam Date Teste sample M est Metho							

Figure P 4: Compaction report NA 25352 (Downer Group)

High Modulus Asphalt (EME2)

August 2018

Figure P 5: Core locations for KEE Group

