

WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

High Modulus Asphalt (EME2) 2016-001 Dupuy Conceils Report

Dupuy Conseils

AN INITIATIVE BY:

High Modulus Asphalt (EME2) 2016-001

Report 2 of 3

for Main Roads Western Australia

Reviewed

Project Leader

Willie Valenzuela

Quality Manager

avega

Dr Elsabe van Aswegen

PRP-16-8 August 2018

ABN 68 004 620 651

Victoria

500 Burwood Highway Vermont South VIC 3133 Australia P: +61 3 9881 1555 F: +61 3 9887 8104 info@arrb.com.au

Western Australia

191 Carr Place Leederville WA 6007 Australia P: +61 8 9227 3000 F: +61 8 9227 3030 arrb.wa@arrb.com.au

New South Wales

2-14 Mountain St Ultimo NSW 2007 Australia P: +61 2 9282 4444 F: +61 2 9280 4430 arrb.nsw@arrb.com.au

Queensland

123 Sandgate Road Albion QLD 4010 Australia P: +61 7 3260 3500 F: +61 7 3862 4699 arrb.qld@arrb.com.au

South Australia

Level 11. 101 Grenfell Street Adelaide SA 5000 Australia P: +61 8 7200 2659 F: +61 8 8223 7406 arrb.sa@arrb.com.au

International office

770 Pennsylvania Drive Suite 112 Exton, PA 19341 USA Tel: 610-321-8302 Fax: 610-458-2467

DUPUY Conseils Rés La Grand Voile Appt F3 9 impasse des Chagos 97419 LA POSSESSION FRANCE

ARRB 191 carr Place Leederville

WA 6007 - AUSTRALIA

Le Port 29/04/2017

Number of sheets: 44

Tonkin Highway Intersection Improvments– Trial Enrobés à Module Elevé 0/14 classe 2 (EME 2)

Subject:

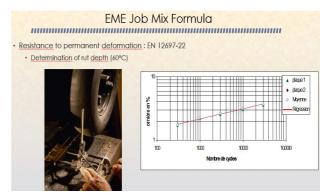
• Technical report

Dear client,

On the behalf of DUPUY Conseils please find a technical report edited after a campaign on field between 25^{th} et 28^{th} of april 2017.

Yours faithfully

Pierrick DUPUY


Special thanks:

On regard to the quality of the shares and the professionalism of the actors a particular thank is compulsory toward the application team and the staff but specially to Les MARCHANT, Steve HALLIGAN and Willie VALENZUELA.

Technical assistance Road Construction / Civil Engineering	Tonkin Highway I <u>T</u> <u>TECHN</u>	*			
1 7 0 4 2 8	A R R B	P D U	CRT	0 2	0 1
Date	Marché	Aut.	Type	Aff.	Inter.

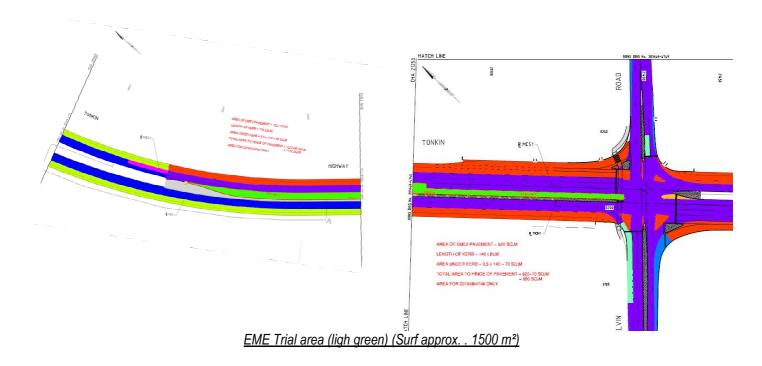
On the other hand, a complete presentation about EME2 (and commented on the 28th april within Main Road office) is presented. It deals with the fields of pavement structure design then formulation approach and depicts specifications about production to end with application and controls on field.

INDEX

1	INTE	RODUCTION	.3
2	TRI	AL ON TONKIN HIGHWAY – OBSERVATIONS AND IMPROVEMENT AXIS	.3
	2.1	Context	. 3
	2.2	Quality of the support	. 4
	2.3	Material inspection	. 4
	2.4	Application	. 5
3	MEE	TING AND PRESENTATION	11
4	APP	PENDIX	11

DUPUY CONSEILS Technical assistance Road Construction / Civil Engineering	Tonkin Highway Intersection Improvements Trial EME 2 <u>TECHNICAL REPORT</u>				
1 7 0 4 2 8 Date	A R R B Marché	P D U Aut.	C R T	0 2 Aff.	0 1 Inter.

1 INTRODUCTION


On the demand of the contractor ARWB, its technical support ARRB has been designated to lead an operation of technical assistance thanks to the support of a qualified expert in the field of road construction and specifically in EME 2 for High Modulus Asphalt class 2.

The mission of Pierrick DUPUY is based on the participation to a trial in the surroundings of PERTH (Western Australia Province) at the intersection of Kelvin Road and Tonkin Highway and ends with a presentation wich deals with all the aspects of the use of EME2.

2 TRIAL ON TONKIN HIGHWAY – OBSERVATIONS AND IMPROVEMENT AXIS

2.1 Context

On the 26th of April the purpose is the application of 2 layers of 105 mm of EME as indicated on the plan below:

The presence on field is dedicated to a technical support and a material inspection.

DUPUY CONSEILS Technical assistance Road Construction / Civil Engineering	Tonkin Highway Intersection Improvements Trial EME 2 TECHNICAL REPORT				
1 7 0 4 2 8	A R R B	P D U	CRT	0 2	0 1
Date (AAMMJJ)	Marché (NRL ou MTx)	Aut. (ex : LDe)	Type (PVE, NTE, CRV, CRR)	Aff. (cf. liste)	Inter. (cf. liste)

2.2 Quality of the support

The support is characteristic of a compacted limestone with a general homogeneity in terms of gradation. Visually the product has been correctly compacted and present a moisture close to the Optimum Proctor Point (= maximum density) without visible lack of density.

The general geometry of the site with an elevation of 25 m added to the absence of table water and a roof top profile reduces the risks of bearing capacity decrease.

Improvement Axis: The use of a prime coat might be seen as an additional security in regard to the structure and the longevity of the pavement. As a fact the emulsion permeability is a property useful for the integrity of the lower part of the EME2 and reduces at long term the risk of bitumen degradation within a section solicited in traction. Even if the geometry of the trial prevents from this issue it might be a disposition to take on other situation.

Eventually the modelization approach takes in account a full bonding between limestone and EME2 and a lack of it can increase the strains at the interface and decrease service life of the pavement.

2.3 Material inspection

Nature	Paver	Cylinder 1	Multi	Cylinder 2	Cylinder 3
Brand – Model	1	HAM HD 070 V-ASC	HAM GRW 280	HAMM HD 90 VOS	BOMAG BW 100
Caracteristics	Wheels	Vibration		Oscillation	(Not used)
Classification *	Wheels	Vt2	P1	Vt2	Vt2
Width	Wheels	1.7 m	2.1 m	1.7 m	1.0 m
Visual maintenance	Good	Good	Good	Good	Good

The material on site is adapted to the need and even more to face breakage issue thanks to extra compaction machines at disposal.

• French standards (depends on weight, width, amplitude and frequency)

The compaction train is heavily constituted and is not in this case the limiting factor of the operation. As a matter of fact, the asphalt plant will be the unity on which the duration of the operation will depends.

The plant visited is a continuous mix plant and not brand new but characterized by a high level of maintenance. The stock piles are clearly separated and aggregates present an excellent cleanliness and a good angularity especially for the sand.

As it will be confirmed, despite the low rate of production around 100 tons per hour the accuracy of grading curve and binder content will be one of the most positive aspect of the trial.

DUPUY CONSEILS Technical assistance Road Construction / Civil Engineering	Tonkin Highway Intersection Improvements <u>Trial EME 2</u> <u>TECHNICAL REPORT</u>				
1 7 0 4 2 8	A R R B	P D U	C R T	0 2	0 1
Date (AAMMJJ)	Marché (NRL ou MTx)	Aut. (ex:LDe)	Type (PVE, NTE, CRV, CRR)	Aff. (cf. liste)	Inter. (cf. liste)

2.4 Application

The application beagn at 11:30 am and EME2 temperature is measured behind the paver at 165°C .

Improvement Axis: A large technical staff is at disposal for asphalt control and temperature control. Even if thermic cameras could identify heterogeneity behind the paver and Infrared thermometer are also useful they do not indicate the internal temperature which is the most important to compare with specifications (min 145°C) and to guaranty the workability.

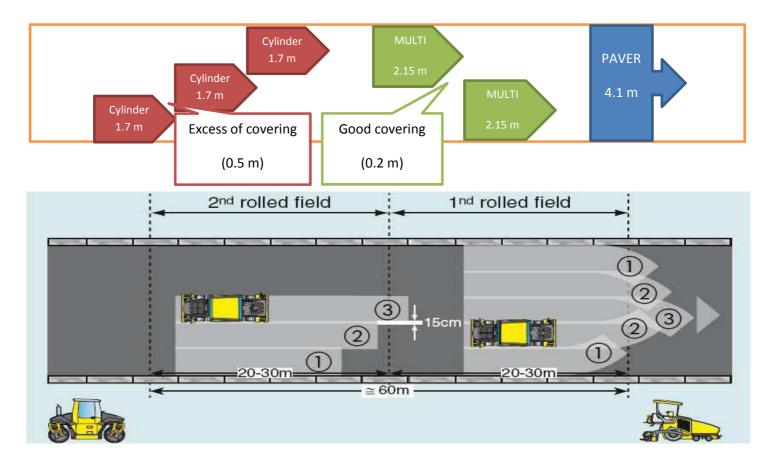
So in that case the use of abrasion resistant thermocouple is recommended.

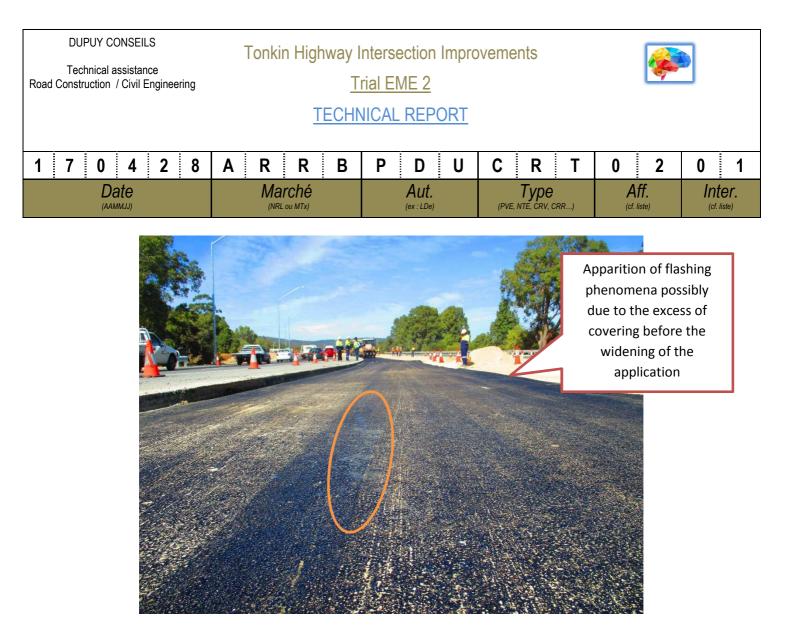
The geometrical aspect of the trial is frequently encountered on road asphalt application. On the contrary to new roads projects, the current operation suffers from width variation and punctual thickness evolution. In that case, the rolling pattern has to be seen as a guideline with permanent adaptation thanks to the visual aspect and the physical feelings on board of compactors.

On the top of that, the rolling pattern can be adapted constantly thanks to the pave tracker and the nuclear gauge at disposal.

Nature	Туре	Number	Effect
Static cylinder	HAM HD 070 V-ASC	2 passes	Avoiding high deformations on "open" surface asphalt
Vibrating cylinder	HAM HD 070 V-ASC	4 passes	Increasing general density
Static multi	HAM GRW 280	6-8 passes	Increasing bottom density
Oscillating* cylinder	HAMM HD 90 VOS	0-2 passes	Reaching the optimal density
Static cylinder	HAMM HD 90 VOS	2-4 passes	Erasing marks and give smooth aspect

*Not compulsory for this application but of the utmost importance on bridges and concrete.

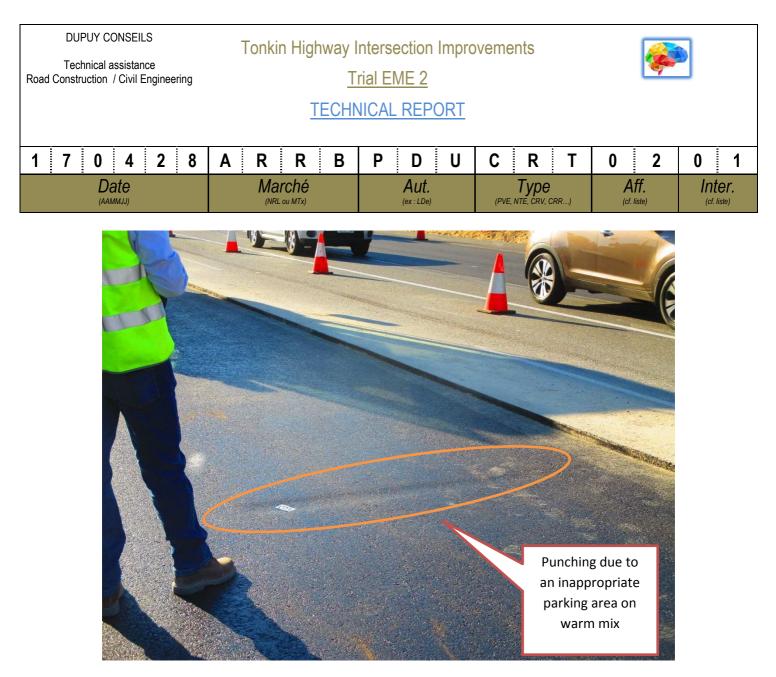

As a demonstration of application team efficiency, internal controls are frequent (thickness, temperature, density) and communication is permanent. If we get a closer look on the compaction train, each driver takes care of his compaction area and avoid the introduction of his compactor on new section without a visual approbation.


So as a result the general aspect is definitely homogenous but for rare and explicable situations.

DUPUY CONSEILS Technical assistance Road Construction / Civil Engineering	Tonkin Highway Intersection Improvements <u>Trial EME 2</u> <u>TECHNICAL REPORT</u>				
1 7 0 4 2 8	A R R B	P D U	CRT	0 2	0 1
Date (AAMMJJ)	Marché (NRL ou MTx)	Aut. (ex : LDe)	Type (PVE, NTE, CRV, CRR)	Aff. (cf. liste)	Inter. (cf. liste)

<u>Improvement Axis</u>: The wandering pattern and the paver itinerary may be a bigger part of the preparation task. The study of width modification and specific tasks could have an impact on the density variation. As an illustration of it, the covering of bands reachs sometimes a high level (> 30 cm) so the mix of compactor type in terms of width could be useful.

Situation on field:


As it is said before, the low rate of production and the deliveries for other customers forces the paver to stop for long time (> 20 min.). This situation has many effects on the EME2 overall quality.

On the one hand the paver's table punches the EME2 particularly rich and leads to "geometrical short wave longitudinal" issues.

On the other hand, the compaction train adapts its behavior in two inappropriate manners:

- The first one leads to an excess of compaction due to the excess of passes and sometimes a "fear" from drivers for stopping the compactors.
- The second one in case of stop is to not reach the paver and let a long distance with an high rate of voids level more difficult to reduce after the paver restart.

<u>Improvement Axis</u>: To guaranty the regularity of voids results on the longitudinal profile it is highly recommended to reduce the speed of the paver instead of stopping it. In that case and after more than 20 minutes of inactivity the table lifting is to be done and the compaction is to be finished. After that compactors must be parked far away from hot or warm asphalt to avoid massive punching (see below).

Application of a tack coat is done between the two EME2 layers. This operation is not as much supervised as the EME2 application despite the fact that the bond properties impact a lot the admissible properties during the modelisation process

So even if the surface is covered, some areas are exposed twice and other present a visual thin coat without forgetting punctual stripping situation.

Improvement Axis: In case of emulsion application few guidelines can be given depending on nature of asphalt

Product/Interface	Tap coat	Bitumen rate**	Emulsion
EME/EME*	Emulsion 60% of 20/30 bitumen	250 gr/m ²	420 gr/m²
EME/EME*	Emulsion 65% of 35/50 bitumen	250 gr/m ²	380 gr/m²

*other layers like surface layers with modified binder: ask precisions to bitumen supplier

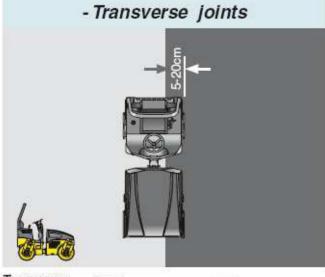
**NF P 98-150-1 (French application norm)

Material used for this purpose deserves the same maintenance program than the others so annual calibration is highly recommended and daily verification of injectors is to be done to avoid stripping issues.

DUPUY CONSEILS Technical assistance Road Construction / Civil Engineering	Tonkin Highway Intersection Improvements				
TECHNICAL REPORT					
1 7 0 4 2 8	A R R B	P D U	C R T	0 2	0 1
Date (AAMMJJ)	Marché (NRL ou MTx)	Aut. (ex : LDe)	Type (pve, nte, crv, crr)	Aff. (cf. liste)	Inter. (cf. liste)

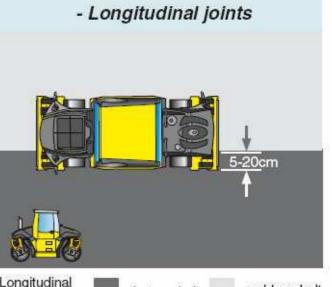
Eventually the longitudinal joint is a topic to be deal within this report even if it concerns not only EME but all asphalt products and surface layers in particular.

The execution program expose the squad to the treatment of a "warm" joint (> 50°C). In that case, a side roll is used to put apart 8 to 15 cm of EME from the edge.



Then the new band is executed with a covering of 3 to 4 cm before the beginning of compaction from the hot mix toward the warm mix by a diagonal approach. As a result, voids rates on field material is punctually over the limit of 6 % and a light and punctual lack of asphalt can be seen.

<u>Improvement Axis</u>: Unless it's done by two pavers separated of less than 50 meters, the longitudinal joint is always a "weakness point". In that case, it is recommended to respect a normal compaction pattern for the first band and overtake the asphalt of approximatively 10 cm over the edge.


Then, when the paver execute the second strip, the covering stay useful on 3 to 4 cm and a reject with the rake of gravel behind the table can be a way to let a sandy asphalt to close the surface of the joint. The compaction starts on the warm band with 5 to 20 cm of overtake and then, the compactor goes back to its normal rolling pattern.

DUPUY CONSEILS	Tonkin Highway Intersection Improvements				
Technical assistance Road Construction / Civil Engineering					
	TECHNICAL REPORT				
1 7 0 4 2 8	A R R B	P D U	C R T	0 2	0 1
Date (AAMMJJ)	Marché (NRL ou MTx)	Aut. (ex : LDe)	Type (PVE, NTE, CRV, CRR)	Aff. (cf. liste)	Inter. (cf. liste)

 Transverse joint
 = hot asphalt
 = cold asphalt

 Fig. 67 Transverse joint without traffic

Longitudinal joint = hot asphalt = cold asphalt *Fig. 68 Longitudinal joint without traffic*

DUPUY CONSEILS Technical assistance Road Construction / Civil Engineering	Tonkin Highway Intersection Improvements <u>Trial EME 2</u>				
	TECHN	NICAL REPORT			
1 7 0 4 2 8	A R R B	P D U	C R T	0 2	0 1
Date (AAMMJJ)	Marché (NRL ou MTx)	Aut. (ex : LDe)	Type (pve, nte, crv, crr)	Aff. (cf. liste)	Inter. (cf. liste)

3 MEETING AND PRESENTATION

The technical mission is concluded by a presentation which develops all the aspects of EME2 and so overtake the execution process to describe the structural approach and formulation aspects.

The entire presentation is attached to this report as an appendix.

4 APPENDIX

- WA Road Research and Innovation Program (WARRIP) "High Modulus Asphalt (EME2)" (33 pages)

Rédigé par Pierrick DUPUY Director

WA Road Research and Innovation Program (WARRIP)

High Modulus Asphalt (EME2) Enrobé à Module Élevé

8:30am – 10:30am Friday 28th April 2017 Main Roads Materials Engineering Branch, 5-9 Colin Jamieson Drive, Welshpool

Pierrick DUPUY

Technical manager - Road Construction and Civil Engineering

Nouvelle Route du Littoral - Reunion Island (France)

mainroads



Quality control and Technical services

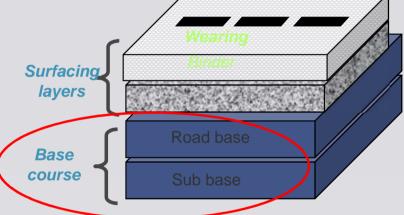
Roland Garros Airport- Expansion of runways and taxiwa) http://www.nouvelleroutedulittoral.re/ 2013

Route des Tamarins Viaducs de la Savane 2005-2006

Toulouse EADS - Aéroconstellation

Route des Tamarins Lot chaussées nord 2007-2009

68A Mussidan-Périgueux



Viaduc de Saint Paul 2005-2009

Origins of the High Modululs Asphalt - EME

- Improving characteristics of "Basic" Road Base Asphalt Concrete
- Optimizing thickness according to pavement design
- Saving cost and delay
- First introduction in France : mid 80's

• Reinforcement, Construction works, Heavy Structures

Standardisation and comparative analyse

o European Standard EN 13108-1

FE101257			GB class 2	GB class 3	EME class 1	EME class 2	
Europea	an standard NF EN 13108-1						
French sta	February 2007	Binder content	> 3.8%	> 4.2%	No minimum	No minimum (But TBA++ and %++)	
French standard a	Material specifications Part 1: Asphalt concrete F: Melanges bitumineux — Specifications des materiaux — Partie 1 : Errobe bitumineux D : Asphaltmischgut — Asphaltbeton — Tell 1: Mischgutantorderungen approved by decision of the Director General of AFNOR on January 5, 2007 taking effect on	Stiffness modulus E* (Mpa) 15°C – 10 Hz	> 9,000	> 9,000	> 14,000	> 14,000	
	February 5, 2007. Replaces the approved standards NF P 98-130, NF P 98-131, NF P 98-138, NF P 98-140 and NF P 98-141, dated November 1999, NF P 98-132, dated June 2000, NF P 98-136, dated December 1991 which remains in effect until January 2008 (see national foreword).	Fatigue 86 (µdef)	> 80	> 90	> 100	> 130	
Correspondence	The European standard EN 13108-1-2006, with its corrigendum AC-2006, has the status of a French standard.	10°C – 25 Hz					
Analysis	This document specifies two approaches, empirical and fundamental, for which the final objective is the specification of bituminous asphalts. These bituminous asphalts are for use on wearing, binding, leveling, and base						
	ourses. They may be spanial are not use of wearing, brindly, evening, and uses ourses. They may be specified either in terms of composition recipies and requirements for the components, in association with additional requirements based on tests related to performance (- empirical), or in terms of requirements based on performance associated with limited prescriptions of composition and components offering a wide degree of freedom (- fundamental).	Thickness	GB class 2	GB class 3	EME class 1	EME class 2	
Descriptors	Technical International Thesaurus: roads, pavements: roads, bituminous products, bituminous coatings, mixtures, asphatta, celetitations, composition: property, binders: materialis, aggregates, additives, tests, contornity tests, density (masavoiume), tensile strength, vold fractions, computation, softening point, penetration, standards lists.	0/14 mm	(8 to14 cm – 6 min)		(7 to13 cm – 6 min)		
Modifications Corrections	With respect to documents replaced, adoption of the European standard. With respect to the first issue, addition of the configendum AC:2008.	0/20 mm	(10 to16 cm – 8 min)		(9 to15 cm – 8 min)		
	sociation Fançaise de Normalhation (AFNOR — Franch standard heffade) — 11, na Fancis de Possanae — Sant Come Cadax — Tel. + 33 (0)1 41 62 80 00 — Faz. + 33 (0)1 49 17 90 00 — www.ahor.org						
© AFNOR 2007	AFNOR 2007 2 rd issue 2008-04-P						

- o 1994: The French Design Manual for Pavement Structures
- o 1997: English version
- o 2011: Update French Standard NF P 98 086

LOCAL APPLICATION

BUT BASED ON

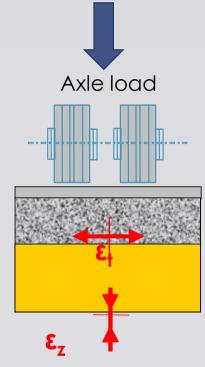
COMMON MECHANICAL THEORIES

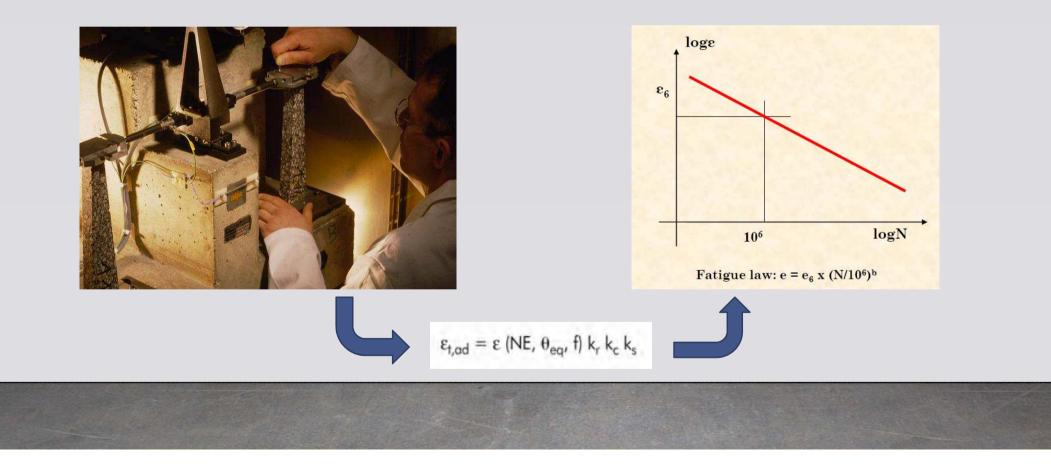
(Stiffness, fatigue,..)

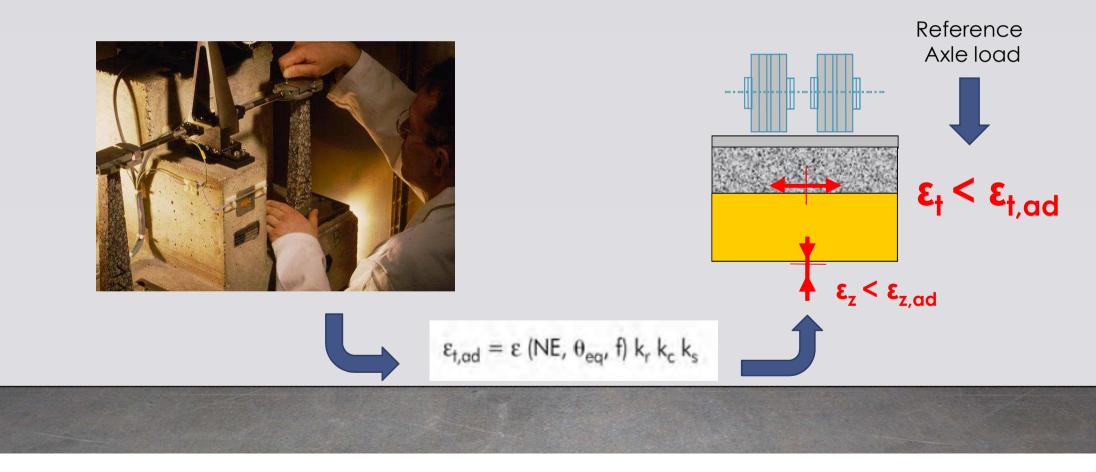
Laboratoire Central des Ponts et Chaussées

FA169297		ISSN 0335-390				
		NF P 98-08				
norme	française	Octobre 201				
	and going of	Indice de classement : P 98-08				
		ICS : 93.080.2				
	Dimensionnement structurel des chaussées routières					
	Application aux chaussé	es neuves				
	E : Road pavement structural design — Applica D : Oberbaudimensionierung für Verkehrsfläche Fahrbahnen	ion to new pavement n — Anwendung auf neue				
Norme française homologuée						
	par décision du Directeur Général d'AFNOR le 28 septembre 2011 pour prendre effe le 28 octobre 2011.					
Remplace la norme homologuée NF P 98-086, de décembre 1992.						
Correspondance	À la date de publication du présent docur de normalisation internationaux ou européens tr					
Analyse	Le présent document définit la méthoce de dime de chaussées routières applicable en France.	nsionnement des structures neuve				
Descripteurs	Thésaurus International Technique : route, e charge d'exploitation, modèle.	haussée, structure, calcul, charg				
Modifications	Par rapport au document remplacé, révision de	ia norme.				
Corrections						
Éditée et diffusée per l'Association	1 Française de Normalisation (AFNOR) — 11, rue Francis de Pres Tél. : + 33 (0)1 41 (62 89 00 — Fax : + 33 (0)1 49 17/90 00 — war	sensé — 93571 La Plaine Saint-Denis Cedex xathor.org				
@ AFNOR	AFNOR 2011	1 ^{er} tirage 2011-10				

FRENCH DESIGN MANUAL FOR PAVEMENT STRUCTURES

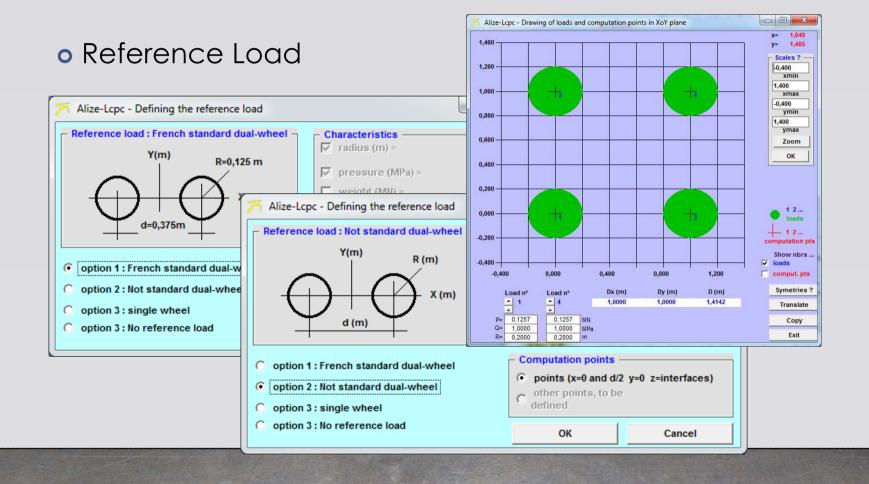

Guide technique


• How to make the best use of the characteristics measured in the laboratory taking into account the actual service conditions?


Structural modeling

	🆰 Alizé	-Lcpc - F	Résultats	(Structu	re : donné	ées écran	, Charge d	e référen
	épaiss. (m)		coef. Poisson	Zcalcul (m)	EpsT (µdéf)	SigmaT (MPa)	EpsZ (µdéf)	SigmaZ (MPa)
	0,050	5400,0	0.250	0,000	77,9	0,864	-76,0	0,657
cke	coat	collé -	0,330	0,050	38,0	0,447	11,4	0,555
	0,100	9300,0	0.250	0,050	38,0	0,763	-15,5	0,555
~ ~ ~	co at	collé -	0,550	0,150	-155,0	-1,967	143,2	0,077
пе	infini	120,0	0,350	0,150	-155,0	0,015	535,8	0,077

• How to make the best use of the characteristics measured in the laboratory taking into account the actual service conditions?



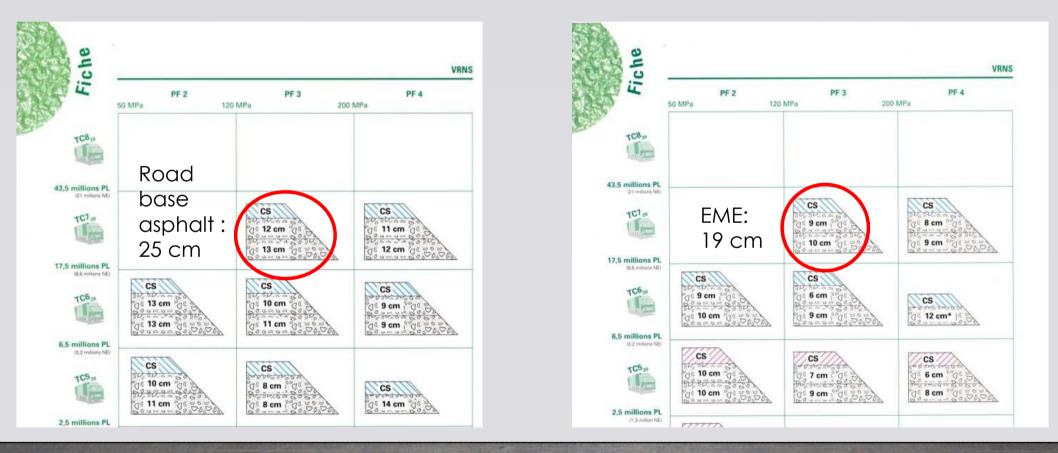
• How to adapt French Road Pavement Design Method to other context :

Reference Load
 Standard axle / country
 Specific load

Modulus / Fatigue values
 Temperature (climate)
 Frequency (speed limit)

• Equivalent Temperature

$$D_{eq} = \left[\frac{\varepsilon eq}{\varepsilon_6(\theta eq)}\right]^{1/b} \times 10^{-6} \sum_i n_i = \sum_i n_i \left[\frac{\varepsilon_i}{\varepsilon_6(\theta_i)}\right]^{1/b} \times 10^{-6}$$

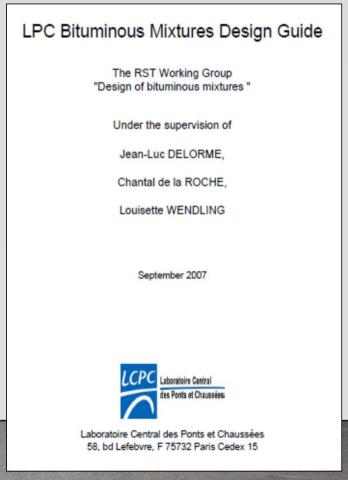

	Teq
Paris	15°C
Sydney	18°C
Mauritius	25°C
Bangkok	30°C

OLAS	Confider	itiel à usa	ge interne
ecton Technique, the of Development			Magny les Hameaux, le 20/12/10
ante d'Expertue de Documentation			RAPPORT DE PRESTATION nº 101075
Те	impératures équiv	alentes T	haïlande et Australie
Demandeur : Etienne (DT DG Réf demandeur :			Autres destinataires : - P. RAFFIN (DTRD) - J-L. GAUTIER (DT CED)
objet de cette note	e est de définir une	Résume	é équivalente de dimansionnement nous la
Thailande et l'Austr	alie, dans le but de itions climatiques loc	formuler de	s EME et de tester leurs performances en
Trafic : 600 PL/jour			e de 8,6t. s températures équivalentes sont :
	Thailande 6 BBME		7
	16 EME 18 E		-
	16 EME	6 BBME 18 EME	-
	16 EME PF2 28,2 °C	18 EME PF3 17,75 °C	
exactement à la temp Ces résultats sont ve	16 EME PF2 28,2 °C che, cette étude mor bérature moyenne du alides dans le cadre chypothéses sont à p	18 EME PF3 17,75 °C the que la ti pays. strict des l rendre en co	mpérature équivalence correspond quasi synothèses détautifées dans le rapport ci- ampte, il convient alors de procéder à un a responsable de la prestation Sandrine BUYTET
exactement à la temp Ces résultats sont va loint. Si de nouvelles	16 EME PF2 28.2 °C che, cette étude mon pérature moyenne du alides dans le cadre leppothéses sont à p ement.	18 EME PF3 17.75 °C three que la tu pays. strict des l rendre en co L S V V	hypothèses détaillées dans le rapport ci- ompte, il convient alors de procéder à un a responsable de la prestation Sandrine BUYTET
exactement à la temp Ces résultats sont va iont. Si de nouvelles nouveau dimensionne Vérifié le 15/12/201	6 ENE PF2 25,2 °C che, cette étude mor vérature moyenne du dides dans le cadre hypothèses sont à p ement.	18 EME PF3 17.75 °C three que la tu pays. strict des l rendre en co L S V V	nypathèses détaillées dans le rapport ci- ampte, il convient alors de procéder à un a responsable de la prestation andrine BUYTET
Vérifié le 15/12/201 par Pierre CIXOUS 15/22/200	16 ENE P2 28.2 °C cche, cette étude mor férature moyene du dulátes dans le cadre hypothéses sont à p ement.	18 EME PF3 17.75 °C three que la tu pays. strict des l rendre en co L S V V	nypathèses détaillées dans le rapport ci- ampte, il convient alors de procéder à un a responsable de la prestation andrine BUYTET

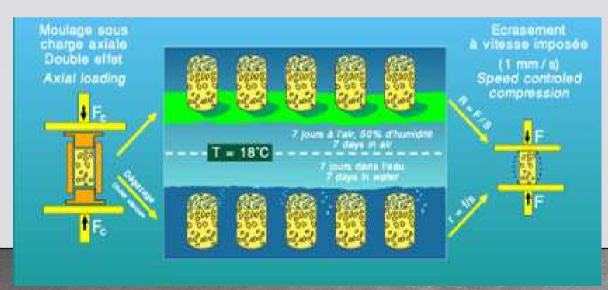
• Modulus Alize Software – Database and update

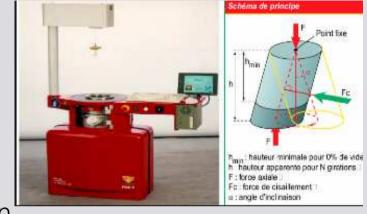
Part of the second s	ious ma		_						1	Variation	s E(10hz)	= f(temp	érature)	62
statut	name	E (MPA)	Nu	Epsi6 (10°C)	-1/b	SN	Sh (m)	Kc	T -10	TO°C	T 10 °C	T 20 °C	T 30 °C	T 40 °C
system	bb	3600	0,35	100	5	0,25	stdard	1,1	14800	12000	7200	3600	1300	1000
system	bbdr	2000	0,35	1	1	1	stdard	1	8220	6670	4000	2000	720	560
system	bbme	6000	0,35	1	1	1	stdard	1	24670	20000	12000	6000	2170	1670
system	gb1	5000	0,35	70	5	0,4	stdard	1,3	18000	14000	9000	5000	2000	800
system	gb2	6300	0,35	80	5	0,3	stdard	1,3	23000	18800	12300	6300	2700	1000
system	gb3	6300	0,35	90	5	0,3	stdard	1,3	23000	18800	12300	6300	2700	1000
system	gb4	7450	0,35	100	5	0,3	stdard	1,3	27200	22240	14550	7450	3190	1180
system	eme1	11000	0,35	100	5	0,3	stdard	1	30000	24000	17000	11000	6000	3000
system	eme2	11000	0,35	130	5	0,25	stdard	1	30000	24000	17000	11000	6000	3000
		20 °C-10H		1 1										

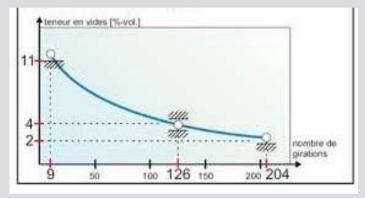
• PF3 (Bearing capacity) : 120 Mpa TC6: 17,5 to 43,5 million of « heavy trucks* » t°: 15°C



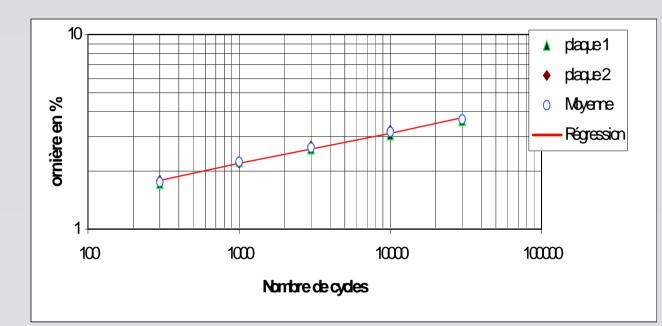
THICKNESS OF THE BASE COURSE : - 24%

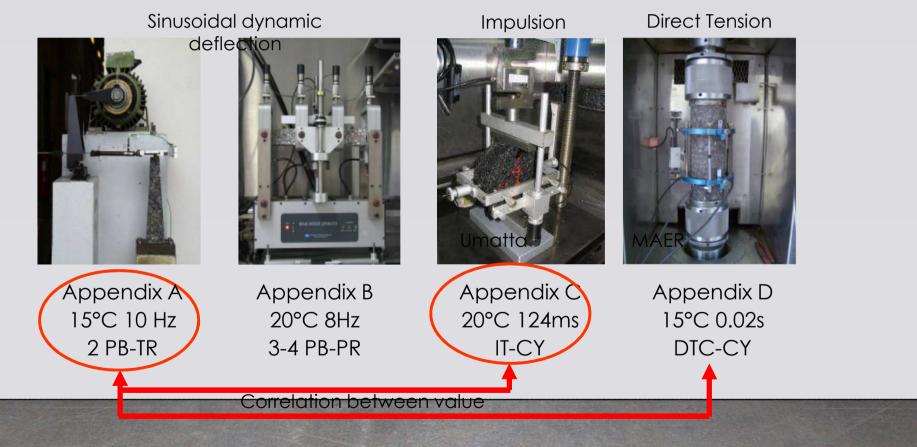

• PF3: 120 Mpa TC6: 6,5 to 17,5 ESAL t°: 15°C


	GB3	EME2
15°C	21 cm	15 cm
18°C (Sydney)	22 cm	16 cm
25°C (Mauritius)	24 cm	17 cm
30°C (Bangkok)	26 cm	18 cm

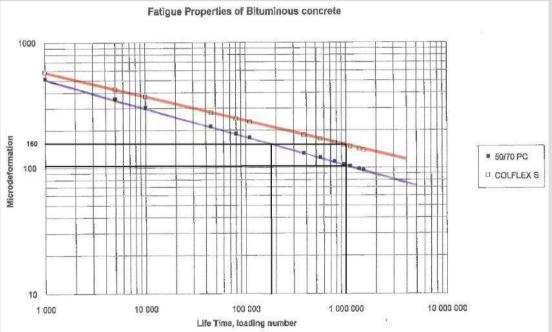

- A few words about the fundamental asphalt mix design method according to EN 13108-20
- 4 levels of performance based tests
 - Workability + Water resistance
 - Resistance to permanent deformation
 - Stiffness modulus E*
 - Fatigue resistance ε₆

- Workability EN 12697-1
 - Giratory compactor Test
- Water resistance EN 12697-12
 - Compressive strenght on cores after 7 days of immersion





- Resistance to permanent deformation : EN 12697-22
 - Determination of rut depth (60°C)

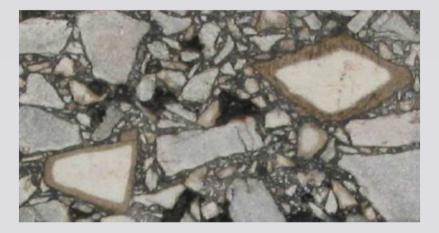


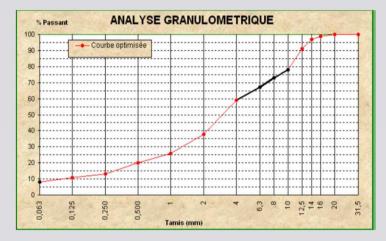
- Stiffness modulus (EN 12697-23)
 - Several methods

- Fatigue resistance (EN 12697-24)
 - Determination of strain level (fatigue) for 1 million cycles ϵ_6 (10°C 25 Hz)

EME Job Mix Formula (1/2)

- An appropriate combination of
 - Aggregates
 - Bitumen
- An appropriate gradation
 - The EN standard does not provide any specification
 - The main aim is to reach a dense mix: void content between 3
 & 6% when tested with the gyratory compactor
- An appropriate bitumen...


EME Job Mix Formula (2/2)

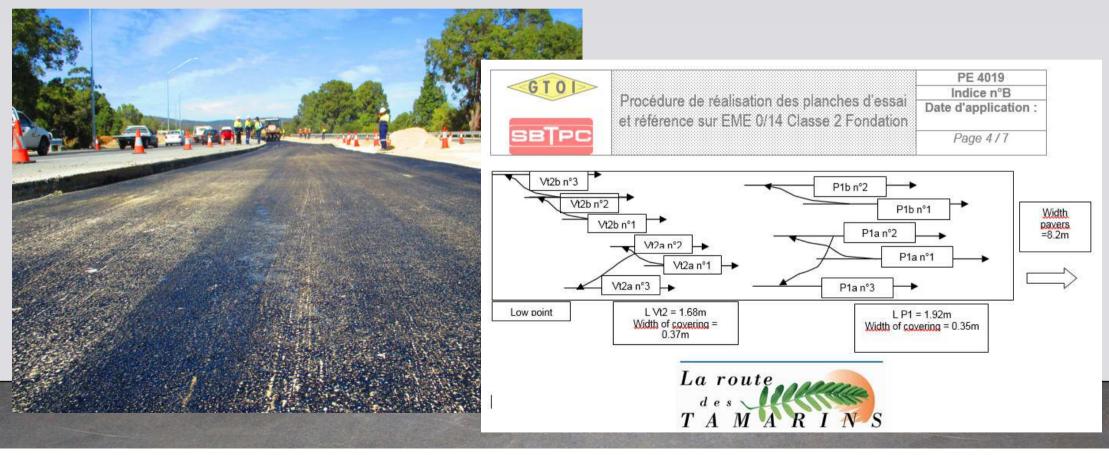

- The quality of the « hard » bitumen will provide the mix with its modulus (and rutting resistance)
 - Importance of origin and Production process
- The quantity of bitumen will provide the fatigue and water resistance
 - if % bitumen
 7 Fatigue resistance
 7

- Epsilon 6 = f(K)145 0 135 0 125 Epsilon 6 115 105 y = 106,19x - 259,8995 $R^2 = 0.8839$ 85 75 3,8 3,7 3,6 3,5 K

Optimized grading curve Low Void Content (< 6%)

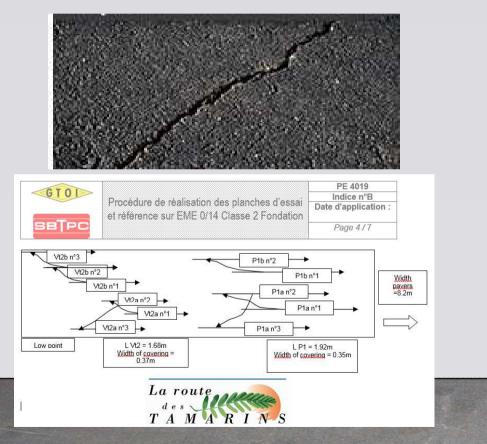
- Influence of porosity of aggregates on « efficient » bitumen content
- Influence or "cleanlinesse" to avoid the use of "adhesion agent"

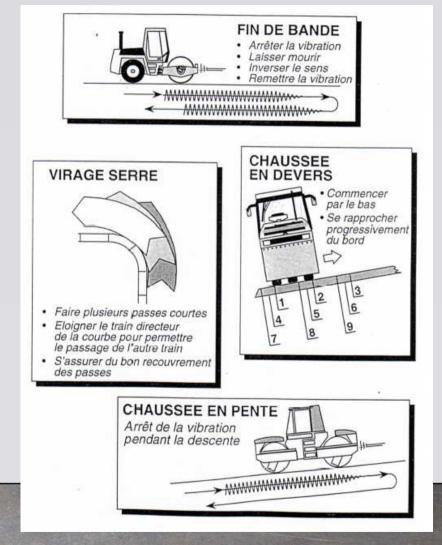
Manufacturing


- Nothing very specific compared to conventional asphalt mixes
- Manufacturing temperature: 160 to 180°C (190°C max)
- Control of production within coating plant
 - In case of non-compliance
 - Check the Calibration of bitumen pump (viscosity)
 - Check the calibration of the feeders (optmium point of production)

- Richness and deformations
 - Improvment axis :keeping material in motion or leave the area because of « punching »

- Richness and high level of compacity
 - Avoid the excess of compaction and bleeding specially when we face superposition of compaction
 - Improvment axis Preparation of a « sweeping » pattern Including the « covering » notion


- Deep and Surface Compaction rate
 - Avoid the differences of density between the bottom and the upper part of the layer
 - **<u>Advice</u>** Use systematicaly a compaction train with cylinder (vibratory roller) and « multi » (pneumatic tyre roller)



• Slope and cracks

- Advice: stabilisation of the asphalt before the compaction of the edge
- Advice:Stop the vibration when the compactor is going downhill
- Advice: compact the curves in several « passes » to limit the shear effect

- Wind / Rain and quick loss of temperature
 - Advice: preserve the heat by every mean possible
 - Protection during transport
 - Production adapted to the cadency
 - Protection ot compactors
 - Shorten the compaction train
 - And stop the application in case of degradation ...

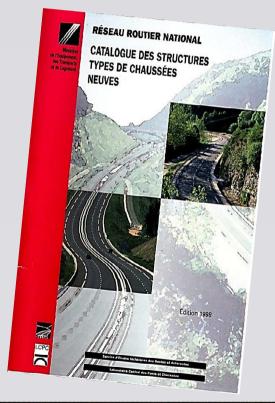
Quality Control

- Internal Control with Asphalt Plant monitoring system
- External control in laboratory : Binder content and grading
- Compaction on site : Cores and nuclear gauge

EXAMPLE OF PROJECTS

Tamarind Highway - Reunion Island - 2002 / 2009

Construction of 2x2 lanes highway 30 kilometers on the west coast 30 bridges – 3 major Viaducts >250,000 t of EME2 for the north part Total cost : 1,100 M€ (1,600M\$)

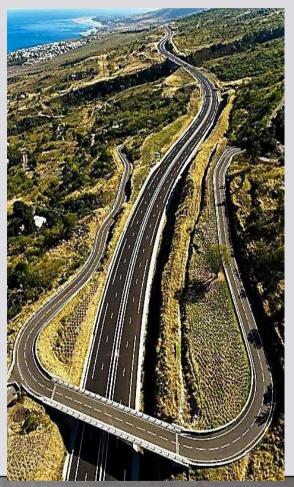

EXAMPLE OF PROJECTS (1/2)

Pavement Structure designed according to French National Road Catalogue :

French and European Standards applicable locally

Preliminary studies for base course : 24 cm "Traditional GB3"

Optimized final structure (30 years–18.5 M axle load/y) :19 cm EME2


EXAMPLE OF PROJECTS (2/2)

<u>Climatic aspects :</u>

20°C local reference temperature ≠ 15°C used in Metropolitan France

Complex modulus for EME2 : 11 500 MPa instead of 14 000 MPa

Impact on thickness : +1 cm EME2 on base courses

Conclusion

How to promote EME:

First

- Use strict Pavement Design method
- Consider Local (load) and climatic conditions

Then:

- Implement EME2 characteristics in Design Method
- Find the adequate binder
 - crucial because of affinity and regularity issues
- Perform comparative tests
 - Compulsory in qualified Laboratory