

- 10:00am 10:05am Welcome
- 10:05am 10:10am Background
- 10:10am 10:25am Video of test method
- 10:25am 10:35am Verification of test method/Work carried out by WARRIP
- 10:35am 10:50am Questions

> Development of bond strength test for assessing asphalt delamination potential

Stage 2 15 December 2021

AN INITIATIVE BY:

Background

- Why investigate bond strength?
 - Reduced deflection and stains
 - Resistance to horizontal forces
 - Prevent moisture ingress
 - Compare tack coats

Source: "Development of trackless bond coat for providing longer lasing asphalt pavements" AfPA symposium 2021

Review of Applicable Bond Strength Tests for Assessing Delamination Potential – Tseng 2018

- Visit WARRIP website for more details
- Review of existing destructive and non-destructive test methods to assess bond strength
- Standard direct shear testing carried out in Europe and in some US states – Leutner based devices most commonly used

Verification of Main Roads Test method

- European test method has been validated and major cross laboratory investigations have been carried out
- European method caters for a number of jurisdictions and therefore aim was to make more specific

Key

- 1 base body
- 2 sample support
- lower shear ring
 upper shear ring
- 4 upper snear n 5 upper body
- 6 guiding bar

Figure 1 — Schematic diagram of the shear bond test apparatus

Source: prEN 12697-482013

Samples "Test Pad" and Gyratory

- 3 layers of Main Roads approved 20mm Intermediate mix (WMA 135°C)
- 3 "tack coats"
 - SAMI Bond 007
 - Standard CRS
 - No tack coat
- Different application rates

Gap width between shearing heads

NOTE The gap length between shear rings influences the test results. A gap length ≤ 5 mm is recommended.

Impact of Diameter

4.2.3.1 Specimens shall be cores of (150 ± 2) mm or (100 ± 2) mm diameter. The minimum thickness of the layers above the interface to be tested shall be 20 mm and below the interface 70 mm respectively. Specimens shall be cored from an in-service pavement according EN 12697-27 or from a slab manufactured using a laboratory roller compactor in accordance with EN 12697-33.

NOTE 1 The specimen diameter influences the test results.

Metal plate extension

NOTE 2 For top and/or bottom layer thickness below the requirement, a metal plate extension shall be glued to the specimen.

Thickness of Extension Material (mm)

Source: Sutanto (2010)

Loading Rate

4.2.1.2 Loading frame capable of achieving a constant vertical displacement rate of $(50,0 \pm 2)$ mm per minute up to a displacement of at least 7 mm and a maximum load of at least 35 kN.

Determination of shear stiffness modulus

Key

- Y shear stress, MPa
- X displacement, in mm

Source: prEN 12697-482013

Comparison testing Main Roads WA and ARRB

Placement of the specimen in the device

Thank you for your time and participation

