

Investigation of Tonkin Highway, Reid Highway and Kwinana Freeway Trial Sections

WAPG May 2018

AN INITIATIVE BY:

Project Overview

- Investigate granular trial pavements with thin asphalt surfacings
 - Tonkin Highway, Maddington
 - Reid Highway, Caversham
 - Kwinana Freeway, Karnup
- Pavements conform to Clause 1.2(c) material criteria
 - CRB/BSL base
 - Limestone subbase
 - Sand subgrade
- Project Aim
 - Reduce conservatism of current procedure
 - Re-work the presentation of Clause 1.2(c) in ERN9
 - Improve value-for-money outcomes

Tonkin Highway- 1980

•	Design granular thickness of	<u>300 mm</u>	<u>297- 298 mm</u>
	 CRB and BSL base 	75 mm	60 – 77 mm
	 Limestone subbase 	225 mm	220 – 238 mm
	 White sand subgrade 		
•	Non-conforming to 3/5 th base rule		
•	SurfacingOGA/DGA surfacing on T2DGA surfacing on T4 and T6	30/30 mm 30 mm	39/46 mm 39 – 42 mm

Tonkin Highway- Construction

- Some non-conformances with specifications
 - Density of base, subbase and subgrade typically below specification by 1 to 5%
 - Mean bitumen content of BSL below specification at 1.6%
- Limestone subbase grading finer than current 501 spec
- Moisture ratio at construction typically 35 to 60% OMC for all materials
 - Moisture of granular and subgrade materials fairly constant over pavement life (37 years)

Tonkin Highway- Traffic and performance

2.8 %

- 37 years in service at the end of 2017 and 2.9E7 ESAs
- Predicted 40 year traffic 3.2E7 ESAs
- Average annual growth
- Recorded resurface in 2011 31 years
- Deflection, D₀
- Curvature

- 0.37 0.44 mm (2016 OWP)
- 0.15 0.20 mm (2016 OWP)
- ➤ CRB section has lowest values
- Rutting 1.6
 - 1.6 5.9 mm (2009 OWP)
 - ➢ BSL section has lowest rut values

Reid Highway- 1996

•	Design granular thickness of	<u>330 mm</u>		
	 CRB and BSL base 	100 mm	90 – 113 mm	
	 Limestone subbase 	230 mm	259 – 271 mm	
	 "White" sand subgrade 			

- Non-conforming to 3/5th base rule
- DGA surfacing on all sections 30 mm 44 65 mm
- Excludes R4 data post 2010 due to reconstruction for intersection works

Reid Highway- Construction

- Minor non-conformance with specifications
 - Density of R3 subbase below by 0.6%
 - Dryback of CRB R4 short by 4%
 - Mean bitumen content of BSL below specification at 1.9%
- Moisture of granular and subgrade materials fairly constant over pavement life (21 years)

Reid Highway- Traffic and performance

- 21 years in service at the end of 2017 and 1.1E7 ESAs
- Predicted 40 year traffic 2.5E7 ESAs
- Average annual growth 3.1 %
- No resurfacing to date and no signs of surfacing fatigue
- Deflection, D₀
- Curvature

0.46 mm (2017 OWP)

0.16 mm (2017 OWP)

- ➢ Both CRB and BSL show similar values
- Rutting 0.9 2.0 mm (2012 OWP)

CRB sections had lowest rut values

Kwinana Freeway- 2009

•	Design granular thickness of	<u>380 mm</u>	
	 CRB and BSL base 	230 mm	255 – 270 mm
	 Limestone subbase 	150 mm	160 mm
	 Yellow sand subgrade 		
 Section K2 (non-conforming to 3/5th rule) 			
	 CRB base 	125 mm	160 mm
	 Limestone subbase 	255 mm	250 mm

OGA/ DGA surfacing

30/30 mm 64 – 65 mm

Kwinana Freeway- Construction

- Good conformance with specifications at construction
 - Mean bitumen content of BSL above specification at 2.1 2.3%

53% OMC

- Dryback of granular and subgrade well within specification
 - CRB base
 - BSL base 51% OMC
 - Limestone subbase
 30 50% OMC
 - Subgrade 21 27 % OMC

Kwinana Freeway- Traffic and performance

- 8 years in service at the end of 2017 and 7.4E6 ESAs
- Predicted 40 year traffic 1.7E8 ESAs
 Average annual growth 7.6 %
- No resurfacing to date and no signs of surfacing fatigue
- Deflection, D₀
 0.27 0.36 mm (2017 OWP)
- Curvature 0.07 0.10 mm (2017 OWP)
 ➢ BSL section has lowest values
- Rutting 1.6 2.6 mm (2014 OWP)
 > BSL section had lowest rut value

General observations

- No signs of asphalt fatigue within the first 15-20 years in service
- Some non-conformances with specifications at each trial
- Granular material still performing well
- Moisture of granular and subgrade materials constant over pavement life
- The current design system typically produced an asphalt fatigue life much lower than what has been observed

RLTT and back-calculation

Material	Stress scenario	Mean RLTT modulus (MPa)	EFROMD3 modulus (MPa)
BSL	Base	730	510 - 1000
CRB	Base	705	600 – 750
Limestone	Subbase	690	260 – 510
Sand	Subgrade	350	180 – 220

Deflection bowl comparison

Deflection bowl comparison

Performance trends and phases

• Within the standard thin asphalt fatigue design period of 15 years, there are three similar phases of performance behaviour:

WARRIP WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

WARRIP WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

Combining the findings

Step 1: Short term design

- Short term fatigue relative to 1st year design traffic

STF= 1^{st} year design traffic ≤ 1.0 short term allowable traffic_{95%}

Step 2: Long term design

- Long term fatigue relative to remaining design traffic 15 years period
- Change in the elastic characterisation and strength of granular materials

LTF= 1^{st} year design traffic – 15 year design traffic ≤ 1.0 long term allowable traffic_{95%}

Step 3: Overall fatigue check STF + LTF ≤ 1.0

Going forward

- Investigate applicability of short term/long term design method over metropolitan network
- Identify a suitable 1st year traffic limit and an annual average growth criteria
- Determine long term granular moduli
- Determine/revise elastic characterisation of granular materials for long term design
- Revise sand subgrade moduli

WARRIP WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

How?

- Investigate a range of non-trial pavements
 - CRB and BSL base
 - Limestone subbase
 - Sand subgrade
 - DGA and OGA/DGA thin surfacing systems
 - Varying ranges of traffic
- Focus on
 - Original design
 - Performance observations
 - Performance trends
 - Back-calculation
 - Traffic analysis

Use the field and — observation data to calibrate the new design system WARRIP WESTERN AUSTRALIAN ROAD RESEARCH AND INNOVATION PROGRAM

Questions?